19.01.2024

Гидродинамические подшипники. Гидродинамический подшипник: особенности применения и принцип работы О конструкциях и материалах


Гидродинамический, или, как часто его называют, гидравлический подшипник – это машиностроительный узел, в котором рабочим телом, непосредственно воспринимающим нагрузку вала механизма, является тонкий слой изолирующей смазывающей жидкости, нагнетаемой в конструкцию при помощи смазываемого вала.

История изобретения подшипника

История изобретения подшипника насчитывает не одну тысячу лет. Первые примитивные подшипники скольжения относятся к эпохе неолита. Люди изготавливали их из камней и использовали в сверлильных приспособлениях для добывания огня и различных приспособлениях для прядения. С развитием человеческой цивилизации примитивные подшипники скольжения начали применяться во многих механизмах, использующих принцип колеса: в повозках, для изготовления глиняной посуды круглой формы при помощи гончарного круга, в ветряных мельницах для подъёма воды и привода жерновов.

Первые сведения о подшипниках качения относятся к 330 году до н.э. В этот период древнегреческий инженер Диад разработал конструкцию тарана для разрушения крепостных стен. В этой конструкции подвижная часть передвигалась на специальных роликах по направляющим.

Впервые металлический подшипник качения был изготовлен в ХУ111 веке в Англии для ветряной мельницы. Конструктивно он состоял из двух чугунных колец, представлявших собой направляющие, между которыми было помещено до сорока чугунных шаров.

В ХХ веке работы учёных О.Рейнолдса и Н.П.Петрова, работавших независимо друг от друга, привели к замечательному открытию. Они установили, что если скорость вращения машинного вала в подшипнике скольжения, наполненном смазкой, достаточно велика, то на валу создаётся как бы искусственная невесомость, при которой вал перестаёт давить на подшипник. Техническое применение этого открытия привело к разработкам подшипников скольжения, обладающих весьма малыми коэффициентами трения. Дальнейшие разработки открытия привели к созданию подшипников, в которых смазывающая рабочая среда нагнетается снаружи при помощи специального насоса.

Особенности применения гидродинамических подшипников

Современные гидродинамические подшипники используются в разнообразных прецизионных механизмах, когда обычные шарико- или роликоподшипники не удовлетворяют необходимым требованиям, предъявляемым к работе тех или иных конструкций и узлов. Например, при необходимости обеспечения минимальной вибрации, малого уровня шума, минимальных габаритов в стеснённых эксплуатационных условиях, достаточно большого срока службы. В процессе дальнейших разработок и усовершенствований такие подшипники становятся всё более и более конкурентоспособными в связи с уменьшающейся себестоимостью изготовления.

Отличие гидростатических подшипников от гидродинамических заключается в том, что в первых необходимое рабочее давление жидкости создаётся при помощи специального насоса, а в последних самосмазывание обеспечивается рабочим валом при его вращении. Следует учитывать, что эффект самосмазывания имеет достаточную эффективность только при достижении паспортных скоростей вращения вала, в противном случае прослойка смазки под валом имеет недостаточную толщину, а это неизбежно приводит к возрастанию сил трения и, как правило, к преждевременному износу механизма. Поэтому, для предотвращения подобных случаев, которые могут происходить достаточно часто, например, при пусках и остановках механизмов, бывает целесообразно предусмотреть специальный «пусковой» насос, который будет использоваться только при вышеупомянутых переходных режимах.

Эксплуатационные достоинства гидродинамических подшипников

Конструктивно гидродинамические подшипники достаточно просты и надёжны.Как правило, они состоят из внешнего и внутреннего колец тороидальной формы, имеющих герметичные уплотнения в местах стыков. Эксплуатационные затраты минимальны или вообще отсутствуют. Подшипники обладают практически, неограниченным сроком службы. Требования к точности их изготовления гораздо ниже, чем к точности изготовления шарико- или роликоподшипников. Уровень шума от таких подшипников гораздо ниже шума, создаваемого подшипниками качения. Вибрации минимальны. Исходя из конструктивных особенностей, подшипники в ряде случаев обладают огромной демпфирующей способностью.

Недостатки гидродинамических подшипников

Нельзя не отметить недостатки гидродинамических подшипников.

Они обладают значительными потерями энергии. Эти потери варьируются в связи с наружными температурными режимами, что значительно затрудняет проведение необходимых температурных расчётов. Гидродинамические подшипники чаще подвержены внезапным авариям при внештатных ситуациях. Подшипники весьма чувствительны к неточностям изготовления валов и их аксессуаров. Возможны утечки рабочей среды в процессе эксплуатации. Поэтому достаточно часты практики установки двух и более цапф в подшипниках для предотвращения утечек с одной стороны.

Область применения

Подшипники применяются, чаще всего, в компьютерных установках, для жёстких дисков, для вентиляторов охлаждения персонального компьютера. Возможно применение для металлообрабатывающих станков, для ядерных реакторов.

Распространены два способа создания «поддерживающего » давления:

статический (гидростатический ) и гидродинамический . В соответствии с этим различают гидростатический и гидродинамический подшипники жидкостного трения. В гидростатических подшипниках давление в поддерживающем слое смазочного материала создают насосом, подающим материал в зазор между цапфой и подшипником. Эти подшипники требуют для нормальной работы сложной гидросистемы. Гидродинамические подшипники получили большее распространение. В них смазочный материал следует подавать только в зону низкого давления откуда вращающейся цапфой он нагнетается вниз, образуя клиновой поддерживающий слой. Проходя через узкий участок радиального зазора, часть смазочного материала удаляется в торцовый зазор между цапфой и подшипником. Другая его часть вытекает в торцовый зазор поверх цапфы, охлаждая подшипник. Удельная нагрузка на подшипник p=F r /(ld).

73. Конструкции подшипников скольжения и материалы деталей. Подшипники скольжения состоят из двух основных частей: корпуса и подшипниковой втулки (вкладыша). Применение вкладышей позволяет изготовлять детали корпусов из дешевых материалов и облегчает ремонт. В малогабаритных и неответственных подшипниках вкладыши иногда отсутствуют, их назначение в этом случае выполняют корпуса. Наиболее распространены опоры с неподвижной осью б) и с подвижной осью в) В механизмах используют опоры на центрах и опоры на кернах г, д)Керны изготовляют в форме цилиндрических осей диаметром 0,25...2 мм, их конические концы закругляют по сферической поверхности радиусом = 0,01...0,2 мм. Опоры механизмов и машин условно можно подразделить на автономные и встроенные. Автономные опоры изготовляют по стандартам в разъемном и неразъемном исполнениях. Подшипники с неразъемным корпусом сравнительно просты и дешевы, но сложны при монтаже. Это ограничивает область их использования. Разъемные подшипники широко применяются в различных конструкциях. Он состоит из: корпуса 1 , крышки 2, вкладыша 3, крепежных болтов с гайками 4 и масленки 5. Подшипниковые вкладыши выполняют цилиндрическими без бурта для радиальной нагрузки или с буртом для восприятия осевой и радиальной сил. Их изготовляют неразъемными и разъемными Разъем вкладыша рекомендуется выполнять в плоскости, перпендикулярной радиальной нагрузке., а разъем корпуса - ступенчатым. Уступ в ступенчатом разъеме препятствует поперечному сдвигу крышки относительно корпуса подшипника. Смазывание осуществляют различными смазочными материалами с помощью колпачковых или капельных масленок.

74. Общие сведения Классификация подшипников качения. Подшипники качения являются наиболее распространенным видом опор деталей механизмов и машин. В отличие от подшипников скольжения в них реализовано трение качения между деталями: наружным 1 и внутренним 2 кольцами, телами качения 3 , расположенными между кольцами. Для предохранения тел качения от соприкосновения между собой их отделяют друг от друга сепаратором 4.



Тела качения перемещаются по тщательно обработанным беговым дорожкам А , выполненным на кольцах. Преимущества подшипников качения перед подшипниками скольжения :1)малые осевые габариты, 2)малое сопротивление пуску и вращению, 3)простота обслуживания, 4)низкая стоимость, 5)взаимозаменяемость. Недостатки : 1)большие радиальные габариты и сложный монтаж, 2)меньшая радиальная жесткость,3)низкая долговечность при высоких оборотах (из-за перегрева) и др. Классификация подшипников. 1)По форме тел качения подшипники подразделяют на шариковые и роликовые по форме роликов а)с коротким и и длинными цилиндрическими роликами, б)с коническими в)бочкообразными г)игольчатыми д)и витыми роликами). 2)По направлению воспринимаемых сил подшипники разделяют на: а)радиальные , воспринимающие преимущественно радиальные нагрузки, б)радиально-упорные , воспринимают действие радиальных и осевых нагрузок; в)упорно-радиальные , воспринимают осевую нагрузку при незначительной радиальной нагрузке; г)упорные , воспринимающие только осевые силы По способности самоустанавливаться подшипники подразделяют на не самоустанавливающиеся и самоустанавливающиеся , допускающие поворот оси внутреннего кольца по отношению к оси наружного кольца. По числу рядов тел качения различают подшипники однорядные , двухрядные и четырехрядные . Подшипники одного и того же диаметра отверстия подразделяют на серии : по габаритным размерам наружного диаметра сверхлегкую, особо легкую, легкую, среднюю и тяжелую, а в зависимости от ширины они подразделяются на: особо узкую, узкую, нормальную, широкую, особо широкую.


75. Статическая грузоподъёмность подшипников. Статической грузоподъемностью подшипника называют нагрузку Со (радиальную и осевую), которая вызывает общую остаточную деформацию наиболее нагруженного тела качения. Значения С о для подшипников различных типов и серий даны в справочниках. Если подшипник нагрузить одновременно радиальной F r и осевой F a силами, и принять, что осевая сила равномерно распределена между телами качения, то используя схему нагружения, можем найти величину статической эквивалентной нагрузки по формуле F сэ =x 0 F r +Y 0 F a , где Х 0 и У 0 коэффициенты радиальной и осевой сил. Значения коэффициентов Х о и Y о для подшипников различных типов приведены в справочниках. Для любого подшипника одинаковая статическая эквивалентная нагрузка может быть получена при различных соотношениях сил F r и F a Подшипник подбирают из условия F сэ ≤C 0 если F сэ >F r при F сэ ≤F r принимают F сэ =F r .

76. Динамическая грузоподъемность подшипников . Под динамической грузоподъемностью С подшипников понимают постоянную радиальную нагрузку (в Н), которую подшипник с одним неподвижным кольцом может воспринимать в течение номинальной долговечности в один миллион оборотов. Учитывая условие прочностной надежности подшипника долговечность подшипника можно представить в виде L=(C/F) q ≤L p , где L - номинальная долговечность подшипника (млн. оборотов); С - динамиче­ская грузоподъемность (Н); q - показатель степени кривой усталости подшипника; Lp = 6 - расчетная долговечность подшипника, (млн. оборотов) п - частота вращения кольца, (мин-1); Lh - расчетная долговечность подшипника, (час). Показатель степени q = 3 - для шарикоподшипников и q = 3,33 - для роликоподшипников. Значения динамических грузоподъемностей С для подшипников различных типов и серий приведены в справочниках.

№ 77 Виды изделий тредования к ним. Стадии разработки машин.

Совокупность деталей предназначенных для совместной работы, называют сборочной единицей (узлом ). :подшипник, узел опоры, редуктор и т. п. Несмотря на различие машин, детали и узлы в них в основном одинаковые: различные соединения (резьбовые, сварные, и др.), передачи (зубчатые, винтовые и др.) валы, муфты, и тд. Требования, предъявляемые к изделиям

Работоспособность - одно из важнейших требований критерии: прочностью( сопротивление деталей машин разрушению), жесткостью (способность деталей сопротивляться изменению формы), износостойкостью (способность деталей сопротивляться изнашиванию, т. е. процессу разрушения и отделения материала с поверхности

твердого тела)., вибростойкостью .

СТАДИИРАЗРАБОТКИ МАШИН

Первая стадия - разработка технического задания (ТЗ )- документа, содержащего наименование, основное назначение, технические требования, показатели качества, экономические показатели и специальные требования заказчика к изделию.

Вторая стадия - разработка технического предложения (ТП )- совокупности КД , обосновывающих целесообразность разработки изделия на основе предложений в ТЗ , рассмотрения вариантов решений. ТП утверждается заказчиком и генеральным подрядчиком.

Третья стадия - разработка эскизного проекта (ЭП )-совокупности КД , содержащих принципиальные конструкторские решения, дающих представление об устройстве изделия, принципе действия, размерах и основных параметрах. Сюда входит пояснительная записка с необходимыми расчетами.

Четвертая стадия - разработка технического проекта - совокупности КД - окончательное решение с полным представлением об устройстве изделия. рассматриваются вопросы надежности узлов, соответствие техники безопасности, условиям хранения и транспортирования и т. д.

Пятая стадия - разработка рабочей документации (РД )- совокупности документов, содержащих чертежи что бы по ним можно было изготовлять изделия и контролировать производство и эксплуатацию. На этой стадии разрабатываются оптимальные конструкции деталей.

Гидродинамический подшипник является машиностроительным узлом, в котором основная нагрузка приходится на тонкий слой изолирующей смывающей жидкости, нагнетаемой при помощи смазываемого вала в конструкцию. Часто изделие называют гидравлическим.

Современные гидродинамические подшипники применяют в различных прецизионных механизмах, особенно, когда обычные роликовые или шариковые разновидности не удовлетворяют требованиям, которые предъявляются к ним для обеспечения работы отдельных узлов или конструкций.

К примеру, использование гидравлических элементов позволяет обеспечить минимальную вибрацию, малый при этом устройства обладают длительным сроком службы. Такие виды подшипников в процессе дальнейших усовершенствований и разработок приобретают все большую конкурентоспособность, поскольку себестоимость их производства постоянно снижается.

В отличии от гидростатических изделий, гидродинамический подшипник имеет несколько иной принцип работы. Если в первом случае рабочее производится посредством специального насоса, то в последнем варианте самосмазывание выполняется при вращении рабочего вала. Следует заметить, что сам по себе эффект самосмазывания происходит только при достижении определенных скоростей вращения вала, которые указываются в паспорте изделия.

В противном случае толщина смазки под валом будет недостаточной, что приведет к увеличению а в итоге вызовет преждевременный износ механизма. Таким образом, чтобы исключить данные ситуации, которые часто возникают, например, при запуске и остановке устройства, имеет смысл использование специального пускового насоса, который будет применяться в описанных переходных режимах.

Гидродинамический подшипник имеет ряд достоинств. Во-первых, изделия отличаются надежностью и простотой конструкции.

Обычно в своем устройстве они состоят из внутреннего и внешнего кольца с тороидальной формой, в местах стыков изделия имеют герметичные уплотнения. Благодаря усовершенствованной конструкции, гидродинамический подшипник практически не имеет затрат по эксплуатации (или они минимальны). Механизм характеризуется длительным периодом службы.

При производстве изделий предъявляемые требования к уровню точности намного ниже, чем при изготовлении шариковых или роликовых видов. Уровень шума от гидравлических устройств значительно ниже, чем звук, исходящий от Изделия производят минимальные вибрации. Благодаря конструктивным особенностям, обладают высокой демпфирующей способностью.

К недостаткам изделий можно отнести их высокую чувствительность к неточностям, возникающим при изготовлении валов. Кроме этого, они обладают значительной потерей энергии.

Гидродинамические подшипники нашли применение в компьютерных устройствах. С их помощью работает жесткий диск, а также вентиляторы охлаждения системного блока. Помимо этого, их используют в они приводят в действие элементы

Статья написана исключительно для ознакомления интернет-пользователей с основными разновидностями подшипников. Будет полезна студентам ВТУЗов и, возможно, молодым специалистам.

Мы не несем ответственности за непосредственный, опосредственный или непреднамеренный ущерб, нанесенный в результате использования информации представленной в данной статье.

Постоянный адрес статьи:

При любом использовании данного материала ссылка на него обязательна!

Вы также можете принять участие в написание статьи, оставив свои дополнения , замечания и комментарии на электронном адресе: Указание имени автора того или иного изменения гарантируется!

Внимание! Доступна новая версия статьи! Подробнее: http://www.prompk.ru/ntn-snr/e/about_bearings/about_bearing.htm

Обсуждение новой версии статьи: http://www.liveinternet.ru/users/prompk_ru/post205546614/

Основные разновидности подшипников

Подшипники - это технические устройства , являющиеся частью опор вращающихся осей и валов. Они воспринимают радиальные и осевые нагрузки, приложенные к валу или оси, и передают их на раму, корпус или иные части конструкции. При этом они должны также удерживать вал в пространстве, обеспечивать вращение, качание или линейное перемещение с минимальными энергопотерями. От качества подшипников в значительной мере зависит коэффициент полезного действия, работоспособность и долговечность машины.

В настоящее время широко находят применение подшипники:

    контактные (имеющие трущиеся поверхности) - подшипники качени я и скольжения ;

    бесконтактные (не имеющие трущихся поверхностей) - магнитные подшипники .

По виду трения различают:

    подшипники скольжения , в которых опорная поверхность оси или вала скользит по рабочей поверхности подшипника;

    подшипники качения , в которых используется трение качения благодаря установке шариков или роликов между подвижным и неподвижным кольцами подшипника.

Подшипники скольжения

Принципиальная схема опоры с подшипником скольжения

Подшипник скольжения представляет собой корпус, имеющий цилиндрическое отверстие, в которое вставляется вкладыш или втулка из антифрикционного материала (часто используются цветные металлы), и смазывающее устройство. Между валом и отверстием втулки подшипника имеется зазор, который позволяет свободно вращаться валу. Для успешной работы подшипника зазор предварительно рассчитывается.

В зависимости от конструкции, окружной скорости цапфы, условий эксплуатации трение скольжения бывает:

    жидкостным, когда поверхности вала и подшипника разделены слоем жидкого смазочного материала , непосредственного контакта между этими поверхностями либо нет, либо он происходит на отдельных участках;

    граничным – поверхности вала и подшипника соприкасаются полностью или на участках большой протяженности, причем смазочный материал в виде тонкой пленки ;

    сухим – непосредственный контакт поверхностей вала и подшипника по всей длине или на участках большой протяженности , жидкостной или газообразный смазочный материал отсутствует;

    газовое – поверхности вала и подшипника разделены слоем газа , трение минимально.

Виды смазки подшипников скольжения

Основные виды смазки

Смазочные материалы и материалы для создания смазочных покрытий. Варианты смазки

В наноструктурном состоянии: С, BN , MoS 2 и WS 2 ;

В виде нанокомпозиционных покрытий: WC / C , MoS 2 / C , WS 2 / C , TiC / C и наноалмаза;

В виде алмазных и алмазоподобных углеродистых покрытий: пленок из алмаза, гидрогенизированного углерода ( a - C : H ), аморфного углерода ( a -С), нитрида углерода ( C 3 N 4 ) и нитрида бора ( BN );

В виде твердых и сверхтвердых покрытий из VC , B 4 C , Al 2 O 3 , SiC , Si 3 O 4 , TiC , TiN , TiCN , AIN и BN ,

В виде чешуйчатых пленок из MoS 2 и графита;

В виде неметаллических пленок из диоксида титана, фтористого кальция, стекла, оксида свинца, оксида цинка и оксида олово,

В виде пленки из мягких металлов: свинца, золото, серебра, индия, меди и цинка,

В виде самосмазывающихся композитов из нанотрубок, полимеров, углерода, графита и металлокерамики,

В виде чешуйчатых пленок из углеродных составов: фторированного графита и фторид графита;

Углерод;

Полимеры: PTFE, нейлон и полиэтилен,

Жиры, мыло, воск (стеариновая кислота),

Керамика и металлокерамика.

Жидкостная

Гидродинамическая смазка: толстослойная и эластогидродинамическая;
- гидростатическая смазка;
- смазка под высоким давлением.

Тонкопленочная

Смешанная смазка (полужидкостная);

Граничная смазка.

Газодинамическая смазка

Существует большое количество конструктивных типов подшипников скольжения : самоустанавливающиеся, сегментные, самосмазывающиеся и т.д.

г )

а - внешний вид,

б - типичный шарнирный подшипник с поверхностью скольжения типа " металл-металл",

в - типичный шарнирный подшипник с самосмазывающейся поверхностью,

г - благодаря возможности самоустановки и восприятия больших нагрузок шарнирные подшипники находят применение в узлах тяжелой техники (например, в гидроцилиндре экскаватора)

Шарнирные подшипники скольжения - одни из немногих типов подшипников скольжения, которые стандартизированы и выпускаются промышленностью серийно

Подшипники скольжения имеют следующие преимущества:

    допускают высокую скорость вращения;

    позволяют работать в воде, при вибрационных и ударных нагрузках;

    экономичны при больших диаметрах валов;

    возможность установки на валах, где подшипник должен быть разъемным (для коленчатых валов);

    допускают регулирование различного зазора и, следовательно, точную установку геометрической оси вала.

а - двигатель шпинделя HDD c подшипником качения,

б - двигатель шпинделя HDD c гидродинамическим подшипником скольжения,

в - расположение гидродинамического подшипника скольжения в HDD (Hard Disk Drive)

Использование гидродинамических подшипников скольжения вместо подшипников качения в компьютерных HDD (Hard Disk Drive ) дает возможность регулировать скорость вращения шпинделейв широком диапазоне (до 20 000 об/мин), уменьшить шум и влияние вибраций на работу устройств, тем самым позволив увеличить скорость передачи данных, обеспечить сохранность записанной информации и срок службы устройства в целом (до 10 лет), а также - создать более компактные HDD ( 0,8-дюймовые )

Сравнение типов подшипников используемых в шпинделях HDD (Hard Disk Drive)

Требования к HDD

Требования к подшипнику

Подшипник качения

Гидродинамический подшипник

Типичное применение

из твердого металла

из пористого материала*

Большой объем хранения данных

Однократные биения

Персональный компьютер, сервер

Высокие скорости вращения

Низкий уровень шума

Низкий уровень шума

Пользовательский компьютер (нетбуки, SOHO)

Низкое потребление тока

Низкий крутящий момент

Устойчивость к ударам

Устойчивость к ударам

Мобильные компьютеры (ноутбуки)

Безотказность

Устойчивость к заклиниванию

Все компьютеры

Жесткость

Жесткость

Примечание:

* - данные приведены для NTN BEARPHITE;

** - обозначения: ++ - очень хорошо, + - хорошо, о - посредственно.

Недостатки подшипников скольжения:

    высокие потери на трение и, следовательно, пониженный коэффициент полезного действия (0,95... 0,98);

    необходимость в непрерывном смазывании;

    неравномерный износ подшипника и цапфы;

    применение для изготовления подшипников дорогостоящих материалов;

    относительно высокая трудоемкость изготовления.

Подшипники качения


Принципиальная схема опоры с подшипником качения

Подшипники качения работают преимущественно при трении качения и состоят из двух колец, тел качения , сепаратора, отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба – дорожки качения, по которым при работе подшипника катятся тела качения.


а)


б)


в)

г) д)

а - с шариковыми телами качения, б - с короткими цилиндрическими роликами, в - с длинными цилиндрическими или игольчатыми роликами, г - с коническими роликами ,

д - с бочкообразными роликами

Примечание: приведены только некоторые виды тел качения

В подшипниках качения применяются тела качения различных форм

В некоторых узлах машин в целях уменьшения габаритов, а также повышения точности и жесткости , применяются так называемые совмещенные опоры: дорожки качения выполняются непосредственно на валу или на поверхности корпусной детали. Некоторые подшипники качения изготовляют без сепаратора. Такие подшипники имеют большое число тел качения и, следовательно, большую грузоподъемность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.

Для сокращения радиальных размеров и массы используются “безобоемные” подшипники

Сравнение подшипников качения по эксплуатационным характеристикам

Тип подшипника

Высокая частота вращения

Восприятие перекоса

радиальная

осевая

комбинированная

Шариковый радиальный

Шариковый радиальный двухрядный сферический

Радиально-упорный однорядный шариковый

Радиально-упорные шариковые двухрядный и однорядный сдвоенный ("спина к спине")

Шариковый с четырехточечным контактом

С коротким цилиндрическими роликами без бортов на одном из колец

С коротким цилиндрическими роликами с бортами на противоположных сторонах наружного и внутреннего колец

Радиальный игольчатый

Сферический роликовый

Конический роликовый

Упорный шариковый

Упорный с коническими роликами

Упорно-радиальный роликовый сферический

Примечание:

* - обозначения: +++ - очень хорошо, ++ - хорошо, + - удовлетворительно, о - плохо, х - непригодно.

По сравнению с подшипниками скольжения имеют следующие преимущества:

    значительно меньше потери на трение, а, следовательно, более высокий КПД (до 0,995) и меньший нагрев;

    в 10...20 раз меньше момент трения при пуске;

    экономия дефицитных цветных материалов, которые чаще всего используются при изготовлении подшипников скольжения;

    меньшие габаритные размеры в осевом направлении;

    простота обслуживания и замены;

    меньше расход смазочного материала;

    невысокая стоимость вследствие массового производства стандартных подшипников;

    простота ремонта машины вследствие взаимозаменяемости подшипников.

e )

а - повреждение внутреннего кольца сферического роликового подшипника, вызванное чрезмерным натягом при посадке ;

б - фреттинг-коррозия внутреннего кольца радиального роликового цилиндрического подшипника, вызванное действием вибрации ;

в - повреждение внутреннего кольца радиального шарикового подшипника, вызванное действием чрезмерной осевой нагрузки ;

г - повреждение внутреннего кольца радиального роликового цилиндрического подшипника, вызванное действием чрезмерной радиальной нагрузки ;

д - следы ржавчины на поверхности ролика сферического роликового подшипника, вызванные попаданием воды внутрь подшипника ;

e - повреждение сепаратора роликового конического подшипника, вызываемое действием больших нагрузок и/или вибраций , и/или неправильным монтажом, и/ или смазыванием, и/или работойна высоких частотах вращения

Повреждения подшипников качения

Недостатками подшипников качения являются:

    ограниченная возможность применения при очень больших нагрузках и высоких скоростях;

    непригодность для работы при значительных ударных и вибрационных нагрузках из-за высоких контактных напряжений и плохой способности демпфировать колебания;

    значительные габаритные размеры в радиальном направлении и масса;

    шум во время работы, обусловленный погрешностями форм;

    сложность установки и монтажа подшипниковых узлов;

    повышенная чувствительность к неточности установки;

    высокая стоимость при мелкосерийном производстве уникальных по размерам подшипников.

Магнитные подшипники

Принцип работы магнитного подшипника (подвеса) основан на использовании левитации, создаваемой электрическими и магнитными полями. Магнитные подшипники позволяют без физического контакта осуществлять подвес вращающегося вала и его относительное вращение без трения и износа.

Детская игрушка Левитрон наглядно демонстрирует, на что способны электромагнитные поля

Электрические и магнитные подвесы, в зависимости от принципа действия, принято разбивать на девять типов:

    Электростатические;

    на постоянных магнитах;

    активные магнитные;

    LC- резонансные;

    индукционные;

    кондукционные;

    диамагнитные;

    Сверхпроводящие;

    Магнитогидродинамические.


Принципиальная схема типичной системы на основе активного магнитного подшипника (АМП)

Наибольшую популярность в настоящее время получили активные магнитные подшипники. Активный магнитный подшипник (АМП) - это управляемое мехатронное устройство, в котором стабилизация положения ротора осуществляется силами магнитного притяжения, действующими на ротор со стороны электромагнитов, ток в которых регулируется системой автоматического управления по сигналам датчиков перемещений ротора. Полный неконтактный подвес ротора может быть осуществлен с помощью либо двух радиальных и одного осевого АМП, либо двух конических АМП. Поэтому система магнитного подвеса ротора включает в себя как сами подшипники, встроенные в корпус машины, так и электронный блок управления, соединенный проводами с обмотками электромагнитов и датчиками. В системе управления может использоваться как аналоговая, так и более современная цифровая обработка сигналов.


Принципиальная схема управления типичной системы на основе активного магнитного подшипника

Основными преимуществами АМП являются:

    относительно высокая грузоподъемность;

    высокая механическая прочность;

    возможность осуществления устойчивой неконтактной подвески тела;

    возможность изменения жесткости и демпфирования в широких пределах;

    возможность использования при высоких скоростях вращения, в вакууме, высоких и низких температурах, стерильных технологиях...

а)

а - схема компрессора с подшипниками качения,

б - схема компрессора с магнитными подшипниками

Применение магнитных подшипников дает возможность сделать конструкцию более жесткой, что, например, позволяет уменьшить динамический прогиб вала при высоких частотах вращения

В настоящие время для АМП идет создание международного стандарта, для чего был создан специальный комитет ISO TC108/SC2/WG7.

АМП могут эффективно применяться в следующем оборудовании :

    Турбокомпрессоры и турбовентиляторы;

    Турбомолекулярные насосы;

    Электрошпиндели (фрезерные, сверлильные, шлифовальные);

    Турбодетандеры;

    газовые турбины и турбоэлектрические агрегаты;

    инерционные накопители энергии.

Шпиндели для вакуумных машин с активными магнитными подшипниками

Однако АМП требуют сложную и дорогостоящую аппаратуру управления, внешнего источника электроэнергии, что снижает эффективность и надежность всей системы. Поэтому идут активные работы по созданию пассивных магнитных подшипников (ПМП), которые не требуют сложных систем регулирования: например, на основе высокоэнергетических постоянных магнитов NdFeB (неодим-жедезо-бор).

Пассивный магнитный подшипник на основе высокоэнергетических постоянных магнитов

1 ) Albert Kascak , Robert Fusaro & Wilfredo Morales. Permanent Magnetic Bearing for Spacecraft Applications. NASA/TM-2003-211996;
2) Ball and Roller Bearings. Сat. №2202. NTN, 2001; 3) Care andMaintenanceof Bearings. Сat. № 3017. NTN;
4) Henrik Strand. Design, Testing and Analysis of Journal Bearings for Construction Equipment. Department of Machine Design. Royal Institute of Technology. Stockholm, Sweden, 2005;

5) ISO Standardization for Active Magnetic Bearing Technology. Published 2005 ;

6) Kazuhisa Miyoshi. Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey. NASA, 2007 ;
7) Needle Roller Bearings. Cat.№ 2300-VII/E. NTN;
8) Needle Roller Bearing Series General Catalogue. IKO;

10 ) Lei Shi, Lei Zhao, Guojun Yang и др. DESIGN AND EXPERIMENTS OF THE ACTIVE MAGNETIC
BEARING SYSTEM FOR THE HTR-10. 2nd International Topical Meeting on HIGH TEMPERATURE REACTOR TECHNOLOGY
. Beijing, CHINA, September 22-24, 2004;
11)
Linear Motion Rolling Guide Series General Catalogue , IKO ;
12 ) Precision Rolling Bearings. Cat .№ 2260-II/E. NTN; 13 ) Spherical Plain Bearings. Сat.№5301-II/E. NTN;

14) Torbjorn A. Lembke. Induction Bearings. A Homopolar Concept for High Speed Machines. Electrical Machines and Power Electronics. Department of Electrical Engineering. Royal Institute of Technology. Stockholm, Sweden, 2003 ;
15 ) Анурьев В.И. Справочник конструктора-машиностроителя. М.: Машиностроение, 2001;
16) Журавлев Ю. Н. Активные магнитные подшипники: Теория, расчет, применение. - СПб.: Политехника, 2003
;
17 ) Орлов П.И. Основы конструирования/Справочно-методическое пособие в 2-х книгах. М.: Машиностроение, 1988;

18) Черменский О.Н., Федотов Н.Н. Подшипники качения. Справочник-каталог. М: Машиностроение, 2003.

Принцип работы гидродинамических подшипников . Гидродинамический подшипник представляет собой опору жидкостного трения. Эти подшипники бывают радиальными и упорными. Радиальный подшипник имеет три или че­тыре сегмента (башмака) 1 (рис. 7.6). С помощью гидравлической системы опора заполняется маслом. Под действием силы тяжести невращающийся шпиндель 3 опускается на сегменты. Когда шпиндель приводится во вращение, он своей шероховатой поверхностью увлекает масло в зазоры между ним и сегментами. Конструкция сегмента, в частности смещенное положение его опоры 2 относительно оси симметрии, позволяет ему поворачиваться под действием давления масла, в результате чего образуется клиновый зазор, су­жающийся в направлении вращения шпинделя, В этом зазоре возникает гидро­динамическое давление р, удерживающее шпиндель во взвешенном положе­нии. Если шпиндель вращается на многоклиновых подшипниках с самоустанавливающимися сегментами, охватывающими его равномерно по окружнос­ти, незначительное смещение его из среднего положения под действием внеш­ней нагрузки приводит к перераспределению давления в клиновом зазоре и возникновению результирующей гидродинамической силы, уравновешиваю­щей внешнюю нагрузку.

Гидродинамические опоры рекомендуется применять для шпинделей, вра­щающихся с высокой постоянной или мало изменяющейся частотой и воспри­нимающих небольшую нагрузку, например для шпинделей шлифовальных станков. Достоинства гидродинамических подшипников заключаются в высо­кой точности и долговечности (смешанное трение только в моменты пусков и остановов), недостатки - в сложности конструкции системы питания опор Маслом, в изменении положения оси шпинделя при изменении частоты его вращения.

Масло для гидродинамических подшипников . Обычно применяют мине­ральное масло марки Л (велосит), имеющее коэффициент динамической вяз­кости у. = (4...5)10~ 3 Па-с при температуре 50 С. Масло (1...3 л/мин при давлении 0,1 ...0,2 МПа) подается в подшипник с помощью гидравлической системы, включающей фильтр тонкой очистки и холодильную установку.

Конструктивные исполнения радиальных гидродинамических подшипни­ков . Сегменты подшипников должны иметь возможность самостоятельно изменять свое положение как в плоскости, перпендикулярной к оси шпинде­ля, так и в плоскости, проходящей через ось. Последнее избавляет от возмож­ных высоких кромочных давлений в опоре, сопровождаемых перегревом масла в тонкой граничной пленке и потерей его смазочных свойств. Имеется ряд конструкций подшипников, у которых зазор между валом и сегментами автоматически изменяется в зависимости от нагрузки и частоты вращения шпинделя.


Одна из конструкций - ЛОН-88, разработанная ЭНИМС, представлена на рис. 7.7. Подшипник выполнен в виде отдельного блока, состоящего из двух колец 2, трех сегментов 1 и проставочного кольца 3. Наружная торцовая по­верхность сегментов находится в двухточечном контакте с коническими по­верхностями колец, вследствие чего сегменты имеют возможность устанавли­ваться вдоль оси шпинделя и в направлении его вращения. Проставочное кольцо своими выступами препятствует смещению сегментов по окружности. Изменяя толщину проставочного кольца, можно регулировать рабочий зазор в подшипнике.

Подшипники другой конструкции - ЛОН-34 - с сегментами 1 , устанавли­вающимися в результате поворота на сферических опорах А (рис. 7.8) , допус­кают скорость скольжения до 60 м/с при отсутствии кромочного давления* Опоры сегментов выполнены в виде винтов 2 из закаленной стали с мелкой резьбой. Перемещениями их в радиальном направлении регулируют радиаль­ный зазор в опоре и положение оси шпинделя. Для повышения жесткости за­зоры в резьбовых соединениях опорных штырей с корпусом выбирают гайка­ми 3, С целью уменьшения изнашивания сегментов в моменты пуска и тормо­жения шпинделя они выполнены биметаллическими: на стальную основу спо­собом центробежного литья нанесен слой бронзы Бр ОФ10-0,5 , Бр 0С10-10 или другого антифрикционного материала. Параметр шероховатости Ra рабо­чих поверхностей сегментов должен быть не выше 0,32 мкм, шеек шпинделя - не выше 0,04...0,16 мкм. Размеры сегментов и опорных винтов приведе­ны в табл. 7.1 и 7.2.


Пример конструкции шпиндельного узла . В передней и задней опорах шпиндельного узла шлифовального станка (рис. 7.9) установлены гидродина­мические подшипники 1 типа ЛОН-88. Осевые нагрузки воспринимаются дву­сторонним упорным подшипником, образованным дисками 2 и 4, С ними контактирует бурт 3 шпинделя. Смазочный материал в этот подшипник под­водится через отверстия Б и 5. Вытеканию масла из шпиндельной бабки пре­пятствуют уплотнения щелевого типа. По каналу Г масло из полостей уплотне­ний сливается в корпус бабки.

Конструктивные параметры подшипников. Диаметр D шейки шпинделя выбирают по условиям жесткости. Длина I подшипника для шлифовальных станков - 0,751), для прецизионных токарных и расточных станков - (0,85- 0,9) D. Длина дуги охвата вкладыша (0,6-0,8)1. Диаметральный зазор = 0,003 D. Обычно применяют подшипники с тремя или четырьмя вкладыша­ми.


Расчет гидродинамических радиальных подшипников . Расчет выполняется с целью определить размеры подшипника в зависимости от заданной нагрузоч­ной способности опоры и ее жесткости. Кроме того, определяют потери на тре­ние в опоре.

Ниже изложена методика расчета радиальных гидродинамических подшип­ников с тремя или четырьмя самоустанавливающимися сегментами для опор со скоростями скольжения до 30 м/с [ 67].

Исходные данные: конструктивные параметры подшипника, частота вра­щения шпинделя, наибольшая радиальная нагрузка, требуемая радиальная жесткость опоры.

Нагрузочная способность (Н) одного сегмента при центральном положе­нии шпинделя

где динамическая вязкость масла, Па-с; n -частота вращения шпинделя, об/с; D - диаметр расточки сегментов, мм; В - хорда дуги сегмента, мм; L - длина сегмента, мм; ; расчетный диаметральный зазор, мм.

Под действием результирующей силы шпиндель смещается из начального положения на е миллиметров, и его новое положение характеризуется относи­тельным эксцентриситетом Если результирующая сила направлена по оси опоры сегмента, нагрузочная способность трехсегментного подшипника


© 2024
uk-neverlend.ru - Строительный портал - UkNeverlend