22.01.2024

Мультивибраторы на полевых транзисторах КР504НТ. MOSFET: простые конструкции Мощный мультивибратор на полевых транзисторах


Мультивибратор на полевых транзисторах

Начинающие радиолюбители, конечно, знают, что мультивибраторы (симметричные и несимметричные) выполняют на биполярных транзисторах. К сожалению, подобные мультивибраторы обладают недостатком - при работе с достаточно мощной нагрузкой, например, лампами накаливания, для полного открывания транзисторов необходимы большие базовые токи.

Если же плечи мультивибратора переключаются с частотой 3...0,2 Гц, приходится устанавливать в частотозадающих цепях оксидные конденсаторы большой емкости, а значит, и больших габаритов. Не следует забывать и об относительно большом напряжении насыщения открытых транзисторов.

В предлагаемом мультивибраторе (см. рисунок) использованы отечественные полевые n-канальные транзисторы с изолированным затвором и индуцированным каналом. Внутри корпуса между выводами затвора и истока стоит защитный стабилитрон, который значительно уменьшает вероятность выхода из строя транзистора при неумелом с ним обращении.

Частота переключения транзисторов мультивибратора около 2 Гц, она задается конденсаторами и резисторами. Нагрузка транзисторов мультивибратора - лампы накаливания EL1, EL2.

Резисторы, включенные между стоком и затвором транзисторов, обеспечивают мягкий запуск мультивибратора. К сожалению, они немного "затягивают" выключение транзисторов.

Вместо ламп накаливания в цепь стока транзисторов допустимо включить светодиоды с ограничительными резисторами сопротивлением 360 Ом либо телефонный капсюль, например, ТК-47 (для этого варианта мультивибратор должен работать в области звуковых частот). В случае использования только одного капсюля, в цепь стока другого транзистора необходимо включить в качестве нагрузки резистор сопротивлением 100...200 Ом.

Резисторы R1, R2 указанных на схеме номиналов можно составить из нескольких последовательно соединенных меньшего сопротивления. Если такого варианта нет, установите резисторы меньших номиналов, а конденсаторы - больших.

Конденсаторы могут быть неполярные керамические либо пленочные, например, серий КМ-5, КМ-6, К73-17. Лампы накаливания применены от "мигающей" елочной гирлянды китайского производства на напряжение 6 В и ток 100 мА. Подойдут также малогабаритные лампы на напряжение 6 В и ток 60 либо 20 мА.

Вместо транзисторов указанной серии, выдерживающих постоянный ток до 180 мА, допустимо применить рассчитанные на больший ток ключи серий КР1064КТ1, КР1014КТ1. В случае использования мультивибратора с более мощной нагрузкой, скажем, автомобильными лампами накаливания, понадобятся другие транзисторы, например КП744Г, допускающие ток стока до 9 А. Но при этом варианте нужно между затвором и истоком установить защитные стабилитроны на напряжение 8...10 В (катодом к затвору) - КС191Ж или аналогичные. При больших токах нагрузки транзисторы придется установить на теплоотводы.

Налаживают мультивибратор подбором конденсаторов до получения желаемой частоты переключения транзисторов. Для работы устройства на звуковых частотах конденсаторы должны быть емкостью 300...600 пф. Если же оставить конденсаторы указанной на схеме емкости, придется подобрать резисторы меньшего сопротивления - вплоть до 47 кОм.

Мультивибратор работоспособен при напряжении питания 3...10 В, разумеется, с соответствующей нагрузкой. Если его предполагается использовать в качестве какого-то узла в разрабатываемой конструкции, между проводами питания мультивибратора устанавливают блокировочный конденсатор емкостью 0,1...100 мкФ.

ВВЕДЕНИЕ

Электронная вычислительная техника - сравнительно молодое научно-техническое направление, но она оказывает самое революционизирующее воздействие на все области науки и техники, на все стороны жизни общества. Характерно постоянное развитие элементной базы ЭВМ. Элементная база развивается очень быстро; появляются новые типы логических схем, модифицируются существующие. Существует множество различных электронных устройств: логические элементы, регистры, сумматоры, дешифраторы, мультиплексоры, счетчики, делители частоты, триггеры, генераторы и др.

Генераторы преобразуют энергию источника питания в энергию периодических или квазипериодических электрических колебаний. Основное назначение генераторов в электронике - это формирование импульсов начальной установки и синхронизации, управляющих сигналов различной формы и длительности.

Все многообразие генераторов можно подразделить на следующие типы:

Генераторы прямоугольных импульсов;

Генераторы линейно-изменяющегося напряжения (ЛИН);

Генераторы ступенчато-изменяющегося напряжения;

Генераторы синусоидальных колебаний

Типичные формы прямоугольных колебаний показаны на рис.1

Генераторы прямоугольных импульсов, имеющие в петле обратной связи элементы, накапливающие энергию, называются мультивибраторами.

Мультивибраторы подразделяются на две группы:

Автоколебательные мультивибраторы;

Ждущие мультивибраторы или одновибраторы.

Основное различие между этими мультивибраторами заключается в том, что автоколебательные мультивибраторы формируют импульсную последовательность при подаче напряжения питания на схему, так как они имеют две цепи обратной связи с накопителями энергии, а ждущие мультивибраторы формируют одиночный импульс с заданными параметрами по внешнему запуску, так как одна петля обратной связи не имеет накопителя энергии. Одновибратор - что-то среднее между мультивибратором и триггером .

Различают мягкий и жесткий режимы возбуждения мультивибраторов. При мягком режиме любые изменения напряжения в цепи обратной связи в момент включения питания приводят к возникновению режима генераций; при жестком режиме генерация возникает, когда напряжение в цепи обратной связи достигает определенного порога.

Мультивибраторы подразделяются на перезапускаемые и неперезапускаемые. В первом случае при подаче импульса запуска генерация выходных сигналов начинается заново с исходного состояния. Перезапуски позволяют неограниченно увеличивать длительность выходного импульса независимо от параметров схемы мультивибратора. Неперезапускаемые мультивибраторы не реагируют на внешние импульсы запуска

Описание схемы мультивибратора на полевых транзисторах

Высокое входное сопротивление полевых транзисторов (ПТ) позволяет конструировать мультивибраторы на очень низкие частоты повторения импульсов при малых ёмкостях времязадающих конденсаторов. Благодаря этому форма выходных импульсов оказывается менее искажённой, а скважность больше, чем у мультивибраторов на биполярных транзисторах.

Для автоколебательных мультивибраторов наиболее подходят ПТ с управляющим p-n переходом, так как во время заряда конденсаторов напряжение на участке затвор-исток приложено в прямом направлении и поэтому сопротивление этого участка мало и малым становится время заряда конденсаторов.

Схема мультивибраторов из ПТ с управляющим p-n переходом и каналом p-типа изображена на рис.2. В этом мультивибраторе через резисторы подаётся небольшое отрицательное напряжение на затвор относительно истока, что повышает стабильность периода колебаний и длительность выходных импульсов В отличие от мультивибратора на БП транзисторах работа устройства не нарушается, если резисторы включить между затвором и общей точкой (схема с «нулевым» затвором).

Временные диаграммы работы несимметричного мультивибратора показаны рис.3. В основных чертах принцип действия этого мультивибратора такой же, как и у лампового. От мультивибратора на БТ его отличает то, что во временно устойчивых состояниях равновесия разряд конденсаторов происходит практически только через резисторы и не до нулевого напряжения, а до значения, при котором напряжение на затворе становится равным напряжению отсечки (обычно 1-6 В)

ПРОЕКТ №33: Простые конструкции на MOSFET-транзисторах

  • 1. Регулятор напряжения
  • 2. Симметричный мультивибратор
  • 3. Стабилизатор напряжения
  • 4. Усилитель НЧ

Возникла идея выполнить несколько опытов по реализации простых конструкций на MOSFET-транзисторах с индуцированным каналом N-типа. Попробую. Возможно, что-то станет основой для будущих проектов моих студентов.

1. Регулятор напряжения
на биполярном транзисторе:
или

и на MOSFETe:

Схемы, как видим, практически, одинаковые.

На вход регулятора подано напряжение:

Напряжение на выходе (R в нижнем положении):

Напряжение на выходе (R в верхнем положении):


Разница между Uвх и Uвых равна падению напряжения на транзисторе:
12,95 – 11,41 =1,54 В.
Как видно, Uвых плавно меняется от 0 до 11,41 В, но его увеличение начинается не с крайнего нижнего положения движка R, а после поворота на некоторый угол (≈ 880 Ом), т.е. когда напряжение на затворе достигнет величины, необходимой для создания (индуцирования) канала проводимости – отпирания транзистора.
Угол поворота есть, но на выходе 0 В:

Угол поворота движка резистора несколько увеличился, увеличилось напряжение на затворе, начинается рост Uвых:

Средний угол поворота:

Максимальный угол поворота:


Регулятор работает вполне нормально. Правда, никакого выигрыша по сравнению с регулятором на биполярном транзисторе, не получится. Закон Ома никто не отменил и на кривой кобыле не объехал. Закон Джоуля-Ленца – аналогично. Поэтому нагрев будет тем больше, чем больше разница между Uвх и Uвых, и чем больше ток. Величина тока зависит от мощности трансформатора и параметров вторичной обмотки. Короче: детка за репку, бабка за детку и далее по тексту (в том смысле, что одно цепляется за друное).

2. Симметричный мультивибратор

Когда-то я посвятил небольшой цикл мультивибратору на биполярных транзисторах (см. «Мультивибратор» в разделе РАДИОбиблиотека). Напомню стандартную схему симметричного мультивибратора:

Там же приводится пример мультивибратора на ПОЛЕВЫХ транзисторах:


ВНИМАНИЕ! В данном случае НЕТ ПРЯМОЙ ЗАМЕНЫ биполярных транзисторов полевыми. Частотозадающие цепочки и нагрузка ВКЛЮЧАЮТСЯ ИНАЧЕ!

Далее цитата:
В данном мультивибраторе использованы отечественные полевые n-канальные транзисторы с изолированным затвором и индуцированным каналом. Внутри корпуса между выводами затвора и истока стоит защитный стабилитрон, который защищает транзистор при неумелом обращении. Конечно, не на 100%.
Частота переключения мультивибратора 2 Гц. Она задаётся, как обычно, С1, С2, R1, R2. Нагрузка - лампы накаливания EL1, EL2.
Резисторы, включенные между стоком и затвором транзисторов, обеспечивают «мягкий» пуск мультивибратора, но, одновременно, несколько «затягивают» выключение транзисторов.
Вместо ламп накаливания нагрузкой в цепях стоков могут служить светодиоды с дополнительными резисторами или телефоны типа ТК-47. В этом случае, разумеется, мультивибратор должен работать в области звуковых частот. Если используется один капсюль, то в цепь стока другого транзистора надо включить резистор сопротивлением 100-200 Ом.
Резисторы R1 и R2 можно составить из нескольких, соединённых последовательно, или, если таковых не найдётся, использовать конденсаторы большей ёмкости.
Конденсаторы могут быть неполярные керамические, либо плёночные, например, серий КМ-5, КМ-6, К73-17. Лампы накаливания на напряжение 6В и ток до 100 мА. Вместо транзисторов указанной серии, которые рассчитаны на постоянный ток до 180 мА, можно применить более мощные ключи КР1064КТ1 или КР1014КТ1. В случае использования более мощной нагрузки, например, автомобильных ламп, следует применить другие транзисторы, например, КП744Г, рассчитанные на ток до 9А. В этом случае между затвором и истоком следует установить защитные стабилитроны на напряжение 8-10В (катодом - к затвору) - КС191Ж или аналогичные. При больших токах стока транзисторы придётся установить на теплоотводы.
Налаживание мультивибратора сводится к подбору конденсаторов для получения желаемой частоты. Для работы на звуковых частотах ёмкости должны быть в пределах 300-600 пФ. Если же оставить конденсаторы указанной на схеме ёмкости, то сопротивление резисторов придётся значительно уменьшить, вплоть до 40-50 кОм.
При использовании мультивибратора в качестве узла в разрабатываемой конструкции, между проводами питания следует включить блокировочный конденсатор 0,1-100 мкФ.
Мультивибратор работоспособен при напряжении питания 3-10В (с соответствующей нагрузкой).
Конец цитаты.

У меня нет отечественных полевых КП501А, в которых имеется встроенный стабилитрон между Истоком и Затвором. Да и нагрузкой моего мультивибратора будут автомобильные лампы.
В следующей схеме применены буржуйские МДП-транзисторы:

При указанных номиналах С и R частота мультивибратора около 1 Гц. При использовании переменных резисторов (нужен ОДИН сдвоенный!) частота регулируется в широких пределах. Если лампы заменить динамиками, а ёмкости С1 и С2 уменьшить в десятки раз, то можно получить колебания звуковой частоты.
Стабилитроны (любые на 8-10 В) служат для предотвращения пробоя транзисторов.
Если нужна только одна нагрузка, то лампу EL1, например, нужно заменить резистором на 100-500 Ом.
Транзисторы – любые аналогичные. При мощной нагрузке их надо ставить на радиаторы.
Я применю МОП-транзисторы FS10UM-5:
.

Тип транзистора: MOSFET с индуцированным каналом N-типа
Максимальная рассеиваемая мощность (Pd): 90 W
Предельно допустимое напряжение сток-исток (Uds): 250 V
Предельно допустимое напряжение затвор-исток (Ugs): 30 V
Максимально допустимый постоянный ток стока (Id): 10 A
Сопротивление сток-исток открытого транзистора (Rds): 0.4 Ohm
Тип корпуса: TO-220
Как видно из фрагмента Datasheet’а, этот транзистор не имеет встроенного стабилитрона.

Мои детальки: лампочки 12В х 5Вт, конденсаторы 1мкФ, резисторы 820к, стабилитроны Д814В:

Мультивибратор спаян "IN STEREO":

Подал напряжение непосредственно с диодного моста – загорелась EL1 и всё. Никаких пульсаций. Схема спаяна верно, обрывов, замыканий нет, все детали исправны. В чём дело? Я даже хотел заменить FS10UM-5 на К1808 и отсоединил радиаторы, но возникли мысли: 1) ежели сгладить пульсации после моста? 2) так ли уж нужны стабилитроны при напряжении питания около ±14В?
Я удалил стабилитроны и подключил параллельно ± диодного моста электролит 1000мк Х 40В:

Включил трансформатор в сеть и мультивибратор тут же заработал:


Пульсации действительно происходят с частотой ≈1 Гц.

Чтобы прояснить ситуацию, решил вернуть стабилитроны на место и тут обнаружил, что один из них был Д818В (это хорошо видно на 2-м фото), а у них, по сравнению с Д814В, анод и катод – наоборот. Надо быть внимательнее! Я впаял ОБА стабилитрона Д814Б:

Без сглаживающего конденсатора в момент включения может быть:
или
т.е. один транзистор открывается, и лампа EL2 светится ярко, а второй – частично, нить накала EL1 еле тлеет; или наоборот, это уж как повезёт.
Но мультивибратор НЕ ЗАПУСКАЕТСЯ.
Вывод: питать мультивибратор на MOSFET’ах надо от батареек, аккумуляторов или от блока питания с простейшим сглаживающим фильтром.
И тут я подумал: а может и на биролярных будет то же самое?! Но проверять не стал.
К сожалению, я не нашёл у себя сдвоенного переменника даже на 100 кОм, поэтому оперативно порегулировать частоту не получилось. Но цель опыта достигнута: мультивибратор на MOSFET’ах с индуцированным каналом N-типа РАБОТАЕТ.
Кстати, 40-минутное «моргание» лампочек никак не сказалось на температуре транзисторов, хотя они без радиаторов. Значит 5 Вт для этих транзисторов – мелочь.
И ещё одно. Я не применял никаких особых мер при пайке полевых транзисторов, но, не смотря на это, ни один из них статикой пробит не был.

3. Стабилизатор напряжения
Сначала процитирую источник, слегка подкорректировав текст (ПТ – полевой транзистор, БП – блок питания).
Начало цитаты:
В литературе неоднократно описывались различные схемы стабилизаторов к БП. В этой статье автор приводит описание аналогового стабилизатора напряжения для БП повышенной мощности. В схеме стабилизатора напряжения удалось значительно улучшить параметры, применив в качестве силового элемента мощный переключающий ПТ.
В основном, при построении сильноточных стабилизаторов напряжения, радиолюбители используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими биполярными транзисторами. Если для этих целей применить мощный переключающий ПТ, то удастся собрать более простой сильноточный стабилизатор. Схема одного из вариантов такого стабилизатора:

В нём применен мощный ПТ IRLR2905. Хотя он и предназначен для работы в ключевом режиме, в данном стабилизаторе он используется в линейном. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечивает ток до 30А при температуре корпуса до 100°С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5...3 В. Мощность, рассеиваемая транзистором, может достигать 110 Вт. Микросхема параллельного стабилизатора напряжения КР142ЕН19 (TL431) управляет ПТ. Работает стабилизатор следующим образом. При подключении сетевого трансформатора Т1 к сети на его вторичной обмотке появляется переменное напряжение около 13 В (эффективное значение). Оно выпрямляется диодным мостом VD1, и на сглаживающем конденсаторе С1 большой емкости (обычно несколько десятков тысяч мкФ) выделяется постоянное напряжение около 16 В.
Оно поступает на сток мощного транзистора VT1 и через резистор R1 на затвор, открывая транзистор. Часть выходного напряжения через делитель R2R3 подается на вход микросхемы DA1, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления «ву» микросхемы DA1 не достигнет порогового – около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе мощного транзистора, т. е. частично закрывая его, и устройство входит в режим стабилизации. Конденсатор СЗ ускоряет выход стабилизатора на рабочий режим. Значение выходного напряжения можно установить в пределах от 2,5 до 30 В подбором резистора R2, значение которого может изменяться в широких пределах. Конденсаторы С1, С2 и С4 обеспечивают устойчивую работу стабилизатора.
Для описанного варианта стабилизатора минимальное падение напряжения на регулирующем мощном транзисторе VT1 составляет 2,5...3 В, хотя потенциально этот транзистор может работать при напряжении сток-исток, близком к нулю. Обусловлен данный недостаток тем, что управляющее напряжение на затвор поступает из цепи стока, поэтому при меньшем значении падения напряжения на нём транзистор открываться не будет, ведь на затворе открытого транзистора должно быть положительное напряжение относительно истока.
Чтобы уменьшить падение напряжения на регулирующем транзисторе, цепь его затвора целесообразно питать от отдельного выпрямителя с напряжением на 5... 7 В больше, чем выходное напряжение стабилизатора. Если нет возможности сделать дополнительный выпрямитель, то в устройство можно ввести дополнительный диод и конденсатор:

Эффект от такой простой доработки может быть большим. Дело в том, что напряжение, поступающее на сток транзистора, является пульсирующим, имеет значительную переменную составляющую, которая увеличивается при увеличении потребляемого тока. Благодаря диоду VD2 и конденсатору С5 напряжение на затворе будет примерно равно пиковому значению пульсирующего, т.е. может быть на несколько вольт больше, чем среднее или минимальное. Поэтому стабилизатор оказывается работоспособным при меньшем среднем напряжении сток-исток.
Лучшие результаты удастся получить, если диод VD2 подключить к выпрямительному мосту:

В этом случае напряжение на конденсаторе С5 увеличится, поскольку падение напряжения на диоде VD2 будет меньше, чем падение напряжения на диодах моста, особенно при максимальном токе. При необходимости плавной регулировки выходного напряжения постоянный резистор R2 следует заменить переменным или подстроечным. Значение выходного напряжения можно определить по формуле: Uвых=2,5(1+R2/R3).
Детали
В устройстве допустимо применитьлюбой подходящий транзистор. Если использовать, к примеру, IRF840, то минимальное значение управляющего напряжения на затворе будет составлять 4,5... 5В. Конденсаторы - малогабаритные танталовые, резисторы - МЛТ, С2-33, Р1-4. Диод VD2 - выпрямительный с малым падением напряжения (германиевый, диод Шоттки). Параметры трансформатора, диодного моста и конденсатора С1 выбирают исходя из необходимого выходного напряжения и тока.
Хотя транзистор и рассчитан на большие токи и большую рассеиваемую мощность, для реализации всех его возможностей необходимо обеспечить эффективный теплоотвод. Примененный транзистор предназначен для установки на радиатор с помощью пайки. В этом случае целесообразно использовать промежуточную медную пластину толщиной несколько миллиметров, к которой припаивают транзистор и на которой можно установить остальные детали.
Затем, после окончания монтажа, пластину можно разместить на радиаторе. Пайки при этом уже не требуется, поскольку пластина будет иметь большую площадь теплового контакта с радиатором.
Если применить для поверхностного монтажа микросхему DA1 типа TL431С, резисторы типа Р1-12 и соответствующие чип-конденсаторы, то их можно разместить на печатной плате:

из одностороннего фольгированного стеклотекстолита. Плату припаивают к выводам транзистора и приклеивают к упомянутой медной пластине клеем. В качестве такой пластины можно использовать, например, корпус с фланцем от испорченного мощного биполярного транзистора, скажем, КТ827, применив при этом навесной монтаж.
Настройка
Налаживание стабилизатора сводится к установке требуемого значения выходного напряжения. Надо обязательно проверить устройство на отсутствие самовозбуждения во всем диапазоне рабочих токов. Для этого напряжения в различных точках устройства контролируют с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам С1, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ с выводами минимальной длины. Размещаются эти конденсаторы как можно ближе к транзистору VT1 и микросхеме DA1.
И. Нечаев
Литература:
1. Мощные полевые переключательные транзисторы фирмы InternationalRectifier. - Радио, 2001, №5, с. 45.
2.И. Нечаев. Необычное применение микросхемы КР142ЕН19А. - Радио, 2003, № 5, с. 53,54.
Конец цитаты.

Я буду делать стабилизатор по схеме:


Поставлю мост VD1 D5SBA60 600В/6А; диод VD2 RGP15J; транзистор VT1 K1531; DA1 (регулируемый стабилитрон) TL431C; конденсаторы С1 1000мк Х 50В, С2 здесь совершенно ни к чему , С3 4,7мк Х 50В, С4 680мк Х 35В, С5 100мк Х 30В; резисторы R1 470 Ом, R2 переменный 20к, R3 3,6к.

Детали:

Стабилизатор буду делать на плате (без макетирования) старым способом – прорезыванием изолирующих дорожек между полигонами. Преимущество этого способа при изготовлении простых плат – быстрота. И экологичность:-)) разумеется.
Эскиз платы:

Кстати нашёлся подходящий кусок двухстороннего фольгированного текстолита:


С одной стороны фольгу пришлось просто содрать:

Дорожки прорезаны:

Плата залужена:

Детали распаяны:

В качестве нагрузки использую мультивибратор. Напряжение на выходе стабилизатора минимально:


Среднее:

Максимальное:

Стабилизатор на MOSFET-транзисторе работает, причём я не подбирал транзистор по каким-то параметрам. При переменном напряжении на выходе трансформатора около 13 В диапазон регулировки Uвых стабилизатора составляет 2,6…12,5 В. Это нормально. Мой транзистор не установлен на радиатор, но это весьма желательно, поскольку пальцем ощутим его нагрев.
После установки на теплоотвод транзистор стал чувствовать себя гораздо комфортнее:


На вход моста я подал ~30 В, что позволило повысить Uвых и регулировать его в более широком диапазоне.

4. Усилитель НЧ
Следуя принципу «от простого», я не буду пытаться собрать УНЧ на MOSFET’ах мощностью в десятки и сотни Ватт.
В сети я быстро нашёл два, подходящих для моих опытов, варианта:
1-ый по адресу: http://amplif.ru/publ/usilitel_na_polevom_tranzistore_klass_a/1-1-0-119

2-ой по адресу: https://www.youtube.com/watch?v=nhTzc8eSNRY

IRF511 у меня нет, зато в достаточном количестве имеются IRF630, и я решил попробовать 2-й вариант.

Хотя, вполне возможно, что и в 1-м варианте IRF630 тоже будет работать. Однако я не провожу тут научное исследование, а просто пробую МОСФЕТы в несложных конструкциях.
Детальки:


Транзистор IRFS630; резисторы МЛТ-1 Вт: 1,3к+1к=2,3к; 470 Ом; 1 Ом; конденсаторы 100мк Х25В, 2200мк Х 35В, 470мк Х 25В.

УНЧ распаян в пространстве (в 3D, в STEREO):

Подан ВХОДной сигнал с нетбука, ВЫХОД на отечественный динамик 10ГДШ-2 4 Ом, питание от стабилизатора на МОСФЕТе:


Усилитель работает. Звук не очень громкий (на слух 300-400 мВт), но особых искажений не слышно. Опыт успешно завершён.

Итак, простые конструкции на MOSFET"ах оказались вполне рабочими. Возможно, что несколько позже я сделаю кое-что не совсем простое, но это будет другой проект и другая история.

В этой статье речь пойдет о простом генераторе световых импульсов, который работает с мощной высоковольтной нагрузкой, построенном по «классической” схеме двухтранзисторного симметричного мультивибратора, но на транзисторах разного типа – биполярном и полевом (рис.1).

Устройство, собранное по предлагаемой схеме, может найти применение для новогодней иллюминации, дискотек, в системах сигнализации или использоваться в качестве рабочего макета для различных экспериментов.

При первом включении генератора в электросеть 220 В конденсатор С3 начинает заряжаться выпрямленным сетевым напряжением через лампу накаливания EL1, токоограничительные резисторы R4–R6 и эмиттерный переход транзистора VT1. Начальное время его зарядки составляет около 20 с. Это определяет задержку первого включения лампы, что в ряде случаев может оказаться полезным. Левое плечо мультивибратора – транзистор VT1 – питается постоянным напряжением около 12 В, которое формируется из выпрямленного диодным мостом VD5 сетевого, ограничивается стабилитроном VD1 и фильтруется оксидным конденсатором С1. Диод VD2 защищает эмиттерный переход транзистора от возможного пробоя высоким напряжением отрицательной полярности при перезарядке конденсатора С3.
Мощный высоковольтный полевой транзистор VT2 с изолированным затвором и n — каналом обогащенного типа периодически открывается в те моменты, когда закрыт VT1. В это время лампа EL1 светит полным накалом. Чтобы полевой транзистор открывался полностью, т.е. работал в ключевом режиме и не перегревался, напряжение затвор-исток должно быть не менее 10 В, но не более 15…20 В. В данном случае оно будет равно рабочему напряжению стабилитрона VD1. Диоды VD3, VD4 защищают затвор полевого транзистора от пробоя, например, при прикосновении отверткой или паяльником. Варистор R8 защищает полевой транзистор от повреждения при всплесках сетевого напряжения.Частота мигания лампы накаливания, в основном, зависит от параметров цепей С2, R3 и C3, R2, R4–R6.

В конструкции можно использовать резисторы С1-4, С2-23, МЛТ и специальные высокомегаомные КИМ-Е, С3-14, С-36. Варистор R8 можно установить на напряжение 390…470 В. Подойдут, например, такие, как FNR307K391, FNR-20K391, FNR-14K431, FNR-05K471 или высоковольтные стабилитроны КС609В, КС903А, КС904АС. Настоятельно не рекомендую пренебрегать этим элементом, так как короткие импульсные всплески сетевого напряжения нередки и могут достигать амплитуды в 5 кВ.
В крайнем случае можно воспользоваться варисторами типа СН1-1 на 560…680 В, которые использовались в устаревших отечественных телевизорах. Конденсатор С1 –К50-35 или импортный аналог. Остальные конденсаторы типов К73-17, К73-24, К73-39. При этом С3 должен быть на напряжение не менее 250 В. Стабилитрон VD1 нужно взять маломощный на рабочее напряжение 12…13 В, подойдут КС207В, КС212Ж, КС213Б, КС508А, Д814Д1, 1N4743A, TZMC-12. Перед установкой на плату стабилитрон следует проверить на исправность. Диоды VD2–VD4 любые из серий КД503, КД510, КД512, 1N4148. Выпрямительный мост VD5 – КЦ402А–В, КЦ405А–В, RC204–RC207, RS204–RS207 или четыре диода, например, КД257В. Транзистор VT1 работает в режиме микротока. Он должен иметь коэффициент передачи тока базы не менее 150. Подойдет любой из серий КТ3102, КТ342, КТ6111, SS9014, 2SC900, 2SC1222. Полевой транзистор при работе с нагрузкой мощностью до 150 Вт можно взять любой из серий КП707, КП777А–В, IRF840, IRF430, BUZ214. При монтаже полевой транзистор нужно обязательно защищать от пробоя, например, временно закоротив все его выводы. Так как из3за высоких сопротивлений резисторов он открывается и закрывается относительно медленно, то его крайне желательно установить на алюминиевый теплоотвод размерами не менее 55х30х4 мм. Проблему можно решить усложнением схемотехники устройства, но это уже будет противоречить концепции простоты предлагаемой конструкции. Для работы с лампами накаливания мощностью более 150 Вт можно использовать параллельное включение нескольких полевых транзисторов, но такой подход в данном случае можно признать нерациональным из-за ощутимого увеличения затрат на комплектующие.

Чертеж возможного варианта печатной платы 55×105 мм показан на рис.2. Частоту мерцания лампы EL1 удобнее задавать изменением емкости конденсаторов С2, С3. При этом следует помнить, что конденсатор С3 сохраняет заряд длительное время после отключения питания. При настройке и эксплуатации устройства следует помнить, что все его элементы находятся под напряжением осветительной сети, и соблюдать необходимые меры осторожности.

Литература
1. Бутов А. Мультивибратор на полевых транзисторах//Радио. – 2002. – №4. – С.53.
2. Чеботков С. Новые мощные полевые транзисторы//Радиомир. – 2001. – №8. – С.39–40.
3. Варисторы Panasonic фирмы Matsushita//Радіоаматор. – 2002. – №3. – С.34.

Источник — РА 12‘2005
А.Л. Бутов, Ярославская обл


© 2024
uk-neverlend.ru - Строительный портал - UkNeverlend