17.02.2024

Электроника обозначения. Маркировка диодов и схема обозначений. Виды электрических схем


Электрическая схема - это текст, описывающий определенными символами содержание и работу электротехнического устройства или комплекса устройств, что позволяет в краткой форме выразить этот текст.

Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Так, для чтения схем следует знать символы - условные обозначения и правила расшифровки их сочетаний.

Основу любой электрической схемы представляют условные графические обозначения различных элементов и устройств, а также связей между ними. Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет в схеме изображенных элемент. Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах.

Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. п.

Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Так, например, существует три типа контактов - замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта - замыкание и размыкание цепи. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта. Дополнительные знаки позволяют найти на схеме контакты , реле времени, путевых выключателей и т.д.

Отдельные элементы на электрических схемах имеют не одно, а несколько вариантов обозначения на схемах. Так, например, существует несколько равноценных вариантов обозначения переключающих контактов, а также несколько стандартных обозначений обмоток трансформатора. Каждое из обозначений можно применять в определенных случаях.

Если в стандарте нет нужного обозначения, то его составляют, исходя из принципа действия элемента, обозначений, принятых для аналогических типов аппаратов, приборов, машин с соблюдением принципов построения, обусловленных стандартом.

Стандарты. Условные графические обозначения на электрических схемах и схемах автоматизации:

ГОСТ 2.710-81 Обозначения буквенно-цифровые в электрических схемах:

Лекция № 4

Полупроводниковые диоды

На рисунке ниже показано условное графическое обозначение полупроводникового диода на принципиальных схемах.

Классификация полупроводниковых диодов

- Выпрямительные диоды;

- Диоды Шоттки;

- Импульсные диоды;

- СВЧ диоды;

- Варикапы;

- Диоды стабилизирующие напряжение (стабилитрон, двуханодный стабилитрон, стабистор);

- Светодиоды;

- Фотодиоды;

- Оптопара (светодиод+фотодиод);

- Тоннельный диод.

Условные графические обозначения диодов разных типов

Принцип работы диода

В основе принципа работы полупроводникового диода лежит p-n переход. Анод соответствует p области перехода, а катод – n области. Про физику работы p-n перехода можно почитать в книге Е.А. Москатова “Электронная техника”. В этой лекции словосочетания диод и p-n переход будут использоваться в качестве синонимов. Каждый p-n переход может работать в качестве диода, но не каждый диод является p-n переходом  Дело в том, что существуют диоды Шоттки, использующие свойства перехода Шоттки (контакт металл-полупроводник).

Если напряжение на аноде больше напряжения на катоде – диод включен в прямом направлении .

Если напряжение на аноде меньше напряжения на катоде – диод включен в обратном направлении.

С увеличением прямого напряжения на диоде, его сопротивление уменьшается, а ток через диод увеличивается. При отсутствии прямого напряжения и тем более при приложении к диоду обратного напряжения (обратного смещения), сопротивление p-n перехода настолько велико, что можно считать его разрывом в цепи. При прямом падении напряжения на диоде равном 0.6-0.7 вольт, сопротивление диода составляет от нескольких десятков до нескольких сотен Ом.

Вышесказанное наглядно подтверждает вольтамперная характеристика полупроводникового диода:

Ток через p-n переход описывается формулой:

где I 0 – ток, вызванный прохождением собственных носителей заряда;

e – основание натурального логарифма;

e’ – заряд электрона;

Т – температура;

U – напряжение, приложенное к p-n переходу;

k – постоянная Больцмана.

–температурный потенциал, при комнатной температуре равный примерно 0,025 В.

Свойства p-n перехода существенно зависят от температуры окружающей среды. При повышении температуры возрастает генерация пар носителей заряда – электронов и дырок, т.е. увеличивается концентрация неосновных носителей и собственная проводимость полупроводника, что, прежде всего, сказывается на изменении обратного тока. При увеличении температуры обратный ток увеличивается примерно в 2 раза при изменении температуры () на каждые 100С у германиевых и на каждые 7,50С у кремниевых диодов.

Максимально допустимое увеличение обратного тока определяет максимально допустимую температуру диода, которая составляет 80 … 100°С для германиевых диодов и 150 … 200°С – для кремниевых.

Минимально допустимая температура диодов лежит в пределах минус (60 … 70) °С.

При достижении некоторой величины обратного напряжения на диоде, сопротивление диода резко уменьшается и ток через диод сильно возрастает. Это явление называется пробоем p-n перехода. Пробой p-n перехода (диода), в свою очередь может быть обратимым и необратимым. Обратимый пробой используется для стабилизации напряжения при помощи стабилитронов.

Важный класс диодов – диоды Шоттки. Падение напряжения на диоде Шоттки в открытом состоянии составляет 0.3 вольта (в отличие от 0.6-0.7 вольт для диода на p-n переходе). Условное графическое обозначение диодов Шоттки на схемах:

Частотные свойства диодов, барьерная емкость

Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства p-n перехода определяются двумя видами ёмкости перехода: барьерной и диффузионной.

Первый вид ёмкости – это ёмкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной ёмкостью

    Относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единица);

    Электрическая постоянная, численно равная 8,854187817.10 − 12

S p - n – площадь p-n перехода;

Второй тип ёмкости – это диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.

Q – суммарный заряд, протекающий через p-n переход.

Эквивалентная схема p-n перехода.

Ri очень мало при прямом включении и будет велико при обратном включении .

Если на p-n переход подавать переменное напряжение, то ёмкостное сопротивление p-n перехода будет уменьшаться с увеличением частоты, и при некоторых больших частотах ёмкостное сопротивление может сравняться с внутренним сопротивлением p-n перехода при прямом включении. В этом случае при обратном включении через эту ёмкость потечёт достаточно большой обратный ток, и p-n переход потеряет свойство односторонней проводимости.

Вывод: чем меньше величина ёмкости p-n перехода, тем на более высоких частотах он может работать.

На частотные свойства основное влияние оказывает барьерная ёмкость, т. к. диффузионная ёмкость имеет место при прямом включении, когда внутреннее сопротивление p-n перехода мало.

Выпрямительные диоды

Основная задачи диода – выпрямление переменного тока/напряжения выполняется за счет вентильных свойств p-n перехода.

Если вы вспомните, что диод - это проводник, пропускающий ток только в одном направлении, то нетрудно понять, как работает схема выпрямителя. Представленная схема называется однополупериодным выпрямителем , так как она использует только половину входного сигнала (половину периода).

Если выпрямленный ток больше максимально допустимого прямого тока диода, то в этом случае допускается параллельное включение диодов

Добавочные сопротивления Rд величиной от единиц до десятков Ом включаются с целью выравнивания токов в каждой из ветвей.

Если напряжение в цепи превосходит максимально допустимое обратное напряжение диода, то в этом случае допускается последовательное включение диодов

Шунтирующие сопротивления величиной несколько сот кОм включают для выравнивания падения напряжения на каждом из диодов.

Однополупериодный выпрямитель неэффективен, так как мы теряем половину напряжения за период, соответственно выходное напряжение в два раза меньше.

Для устранения этого недостатка используют двухполупериодный выпрямитель:

В течение положительного полупериода напряжения Ua (+) диоды VD1 и VD4 открыты, а VD2 и VD3 – закрыты. Ток будет протекать по пути: верхняя ветвь (+), диод VD1, нагрузка, диод VD4, нижняя ветвь (-).

В течение отрицательного полупериода напряжения Ua диоды VD1 и VD4 закрываются, а диоды VD2 и VD3 открываются. Ток будет протекать от (+), нижняя ветвь, диод VD3, нагрузка, диод VD2, верхняя ветвь (-).

Поэтому ток через нагрузку будет протекать в одном и том же направлении за оба полупериода. Схема выпрямителя называется двухполупериодной.

Выпрямленные диодным мотом (двухполупериодной схемой) сигналы, еще не могут быть использованы как сигналы постоянного тока. Дело в том, что их можно считать сигналами постоянного тока только в том отношении, что они не изменяют свою полярность. На самом деле в них присутствует большое количество «пульсаций» (периодических колебаний напряжения относительно постоянного значения), которые необходимо сгладить для того, чтобы получить настоящее напряжение постоянного тока. Для этого схему выпрямителя нужно дополнить фильтром низких частот.

Резистор R в приведенной выше схеме исп. Не обязательно, так как диодный мост имеет определенное выходное сопротивление.

Расщепление напряжения питания. Широко распространена мостовая однофазная двухполупериодная схема выпрямителя, показанная на рисунке ниже. Она позволяет рсщеплять напряжение питания (получать на выходе одинаковые напряжения положительной и отрицательной полярности). Эта схема эффективна, так как в каждом полупериоде входного сигнала используются обе половины вторичной обмотки.

Электрическая схема – это один из видов технических чертежей, на котором указываются различные электрические элементы в виде условных обозначений. Каждому элементу присвоено своё обозначение.

Все условные (условно-графические) обозначения на электрических схемах состоят из простых геометрических фигур и линий. Это окружности, квадраты, прямоугольники, треугольники, простые линии, пунктирные линии и т.д. Обозначение каждого электрического элемента состоит из графической части и буквенно-цифровой.

Благодаря огромному количеству разнообразных электрических элементов появляется возможность создавать очень подробные электрические схемы, понятные практически каждому специалисту в электрической области.

Каждый элемент на электрической схеме должен выполняться в соответствие с ГОСТ. Т.е. кроме правильного отображения графического изображения на электрической схеме должны быть выдержаны все стандартные размеры каждого элемента, толщина линий и т.д.

Существует несколько основных видов электрических схем. Это схема однолинейная, принципиальная, монтажная (схема подключений). Также схемы бывают общего вида – структурные, функциональные. У каждого вида своё назначение. Один и тот же элемент на разных схемах может обозначаться и одинаково, и по-разному.

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.

Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления, и т.д.).


На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.

Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т.д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

Полупроводниковые диоды

Диод – двухэлектродный полупроводниковый прибор с одним p–n-переходом, обладающий односторонней проводимостью тока, предназначен для выпрямления переменного тока.

Существует много различных типов диодов – выпрямительные, импульсные, туннельные, обращенные, сверхвысокочастотные диоды, а также стабилитроны, варикапы, фотодиоды, светодиоды и др.

1. Выпрямительные диоды

Работа выпрямительного диода объясняется свойствами электрического p–n-перехода.

Вблизи границы двух полупроводников образуется слой, лишенный подвижных носителей заряда и обладающий высоким электрическим сопротивлением, – так называемый запирающий слой. Этот слой определяет контактную разность потенциалов (потенциальный барьер).

Если к p–n-переходу приложить внешнее напряжение, создающее электрическое поле в направлении, противоположном полю электрического слоя, то толщина этого слоя уменьшится и при напряжении 0,4 - 0,6 В запирающий слой исчезнет, а ток существенно возрастет (этот ток называют прямым).

При подключении внешнего напряжения другой полярности запирающий слой увеличится и сопротивление p–n-перехода возрастет, а ток, обусловленный движением неосновных носителей заряда, будет незначительным даже при сравнительно больших напряжениях.

Прямой ток диода создается основными, а обратный – неосновными носителями заряда. Положительный (прямой) ток диод пропускает в направлении от анода к катоду.

На рис. 1 показаны условное графическое обозначение и характеристики выпрямительных диодов. Два вывода диода: анод А и катод К не обозначаются и на рисунке показаны для пояснения.

На вольт-амперной характеристике диода обозначена область электрического пробоя, когда при небольшом увеличении обратного напряжения ток резко возрастает.

Электрический пробой является обратимым явлением. При возвращении в рабочую область диод не теряет своих свойств. Если обратный ток превысит определенное значение, то электрический пробой перейдет в необратимый тепловой с выходом прибора из строя.

Рис. 1. Полупроводниковый выпрямительный диод: а – вольт-амперная характеристика, б – условное графическое изображение

Промышленностью в основном выпускаются германиевые (Ge) и кремниевые (Si) диоды.

Кремниевые диоды обладают малыми обратными токами, более высокой рабочей температурой (150 - 200 °С против 80 - 100 °С), выдерживают большие обратные напряжения и плотности тока (60 - 80 А/см2 против 20 - 40 А/см2). Кроме того, кремний – широко распространенный элемент (в отличие от германиевых диодов, который относится к редкоземельным элементам).

К преимуществам германиевых диодов можно отнести малое падение напряжения при протекании прямого тока (0,3 - 0,6 В против 0,8 - 1,2 В). Кроме названных полупроводниковых материалов, в сверхвысокочастотных цепях используют арсенид галлия GaAs.

Полупроводниковые диоды по технологии изготовления делятся на два класса: точечные и плоскостные.

Точечный диод образуют Si- или Ge-пластина n-типа площадью 0,5 - 1,5 мм2 и стальная игла, образующая p–n-переход в месте контакта. В результате малой площади переход имеет малую емкость, следовательно, такой диод способен работать в высокочастотных цепях. Но ток через переход не может быть большим (обычно не более 100 мА).

Плоскостной диод состоит из двух соединенных Si- или Ge-пластин с разной электропроводностью. Большая площадь контакта ведет к большой емкости перехода и относительно низкой рабочей частоте, но проходящий ток может быть большим (до 6000 А).

Основными параметрами выпрямительных диодов являются:

– максимально допустимый прямой ток Iпр.max,

– максимально допустимое обратное напряжение Uобр.max,

– максимально допустимая частота fmax.

По первому параметру выпрямительные диоды делят на диоды:

– малой мощности, прямой ток до 300 мА,

– средней мощности, прямой ток 300 мА - 10 А,

– большой мощности – силовые, максимальный прямой ток определяется классом и составляет 10, 16, 25, 40, - 1600 А.

2. Импульсные диоды применяются в маломощных схемах с импульсным характером подводимого напряжения. Отличительное требование к ним – малое время перехода из закрытого состояния в открытое и обратно (типичное время 0,1 - 100 мкс).

3. Стабилитрон предназначен для стабилизации, т.е. поддержания постоянства напряжения в цепях питания радиоэлектронной аппаратуры. Внешний вид одной из конструкций наиболее распространенных среди радиолюбителей стабилитронов и его графическое обозначение показаны на (рис.2). По устройству и принципу работы кремниевые стабилитроны широкого применения аналогичны плоскостным выпрямительным диодам. Но работает стабилитрон не на прямом участке вольт - амперной характеристики, как выпрямительные или высокочастотные диоды, а на обратной ветви вольт - амперной характеристики , где незначительное обратное напряжение вызывает значительное увеличение обратного тока через прибор. Разобраться в сущности действия стабилитрона вам поможет его вольт - амперная характеристика, показанная на (рис. 2, а). Здесь (как и на рис. 2) по горизонтальной оси отложены в некотором масштабе обратное напряжение Uобр., а по вертикальной оси вниз - обратный ток Iобр. Напряжение на стабилитрон подают в обратной полярности , т. е. включают так, чтобы его анод был соединен с отрицательным полюсом источника питания. При таком включении через стабилитрон течет обратный ток Iобр. По мере увеличения обратного напряжения обратный ток растет очень медленно - характеристика идет почти параллельно оси Uобр. Но при некотором напряжении Uобр. р - n переход стабилитрона пробивается и через него начинает течь значительный обратный ток. Теперь вольт - амперная характеристика резко поворачивает и идет вниз почти параллельно оси Iобр. Этот участок и является для стабилитрона рабочим. Пробой же р - n перехода не ведет к порче прибора, если ток через него не превышает некоторого допустимого значения.

Стабилитрон и его графическое обозначение на схемах

Рис. 2. Вольт - амперная характеристика стабилитрона (а) и схема параметрического стабилизатора напряжения (б)

На (рис. 2 ,б) приведена схема возможного практического применения стабилитрона. Это так называемый параметрический стабилизатор напряжения . При таком включении через стабилизатор V течет обратный ток Iобр., создающийся источником питания, напряжение которого может изменяться в значительных пределах. Под действием этого напряжения ток Iобр., текущий через стабилитрон, тоже изменяется, а напряжение на нем, а значит, и на подключенной к нему нагрузке Rн остается практически неизменным - стабильным. Резистор R ограничивает максимально допустимый ток, текущий через стабилитрон. Параметры стабилитрона: напряжение стабилизации Uст ., ток стабилизации Iст. , минимальный ток стабилизации Icт.min и максимальный ток стабилизации Icт.max . Параметр Uст. - это то напряжение, которое создается между выводами стабилизатора в рабочем режиме. Наша промышленность выпускает кремниевые стабилитроны на напряжение стабилизации от нескольких вольт до 180 В. Минимальный ток стабилизации Iст. min - это наименьший ток через прибор, при котором начинается устойчивая работа в режиме пробоя (на рис. 2, а - штриховая линия Iст.min), с уменьшением этого тока прибор перестает стабилизировать напряжение. Максимально допустимый ток стабилизации Iст.max - это наибольший ток через прибор, при котором температура его р - n перехода не превышает допустимой (на рис. 2, а - штриховая линия Icт.max) - Превышение тока Iст.max ведёт к тепловому пробою р - n перехода и, естественно, к выходу прибора из строя.

4.Фотодиод - полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, обратный ток которого зависит от освещенности р-n перехода. Существуют два режима работы фотодиодов:

Без внешнего источника электропитания (режим фотогенератора);

С внешним источником электропитания (режим фотопреобразователя).

В первом режиме используется фотогальванический эффект. Воздействие светового потока на p n переход через отверстие в корпусе приводит к созданию на зажимах фотодиода (при разомкнутой внешней цепи) разности потенциалов, называемой фото - э.д.с. У селеновых и кремниевых фотодиодов фото - э.д.с. достигает 0,5 - 0,6 В, у диодов из арсенида галлия - примерно 0,8 - 0,9 В.

При замыкании выводов освещенного фотодиода на резистор ток, появляющийся в цепи, зависит от фото - э.д.с. и сопротивления резистора. Максимальный ток при одной и той же освещенности фотодиода возникает при сопротивлении, равном нулю, т.е. при коротком замыкании фотодиода. При больших световых потоках наступает насыщение и рост фото - э.д.с. прекращается. Фотодиоды, работающие в данном режиме, находят применение в солнечных батареях.

Если фотодиоды включить в цепь с источником электропитания в непроводящем направлении (рис.3) и обеспечить освещение, то при изменении интенсивности освещения происходит существенное изменение обратной ветви вольт характеристики и, как следствие, изменение величины обратного тока I .

Рис.3. Полупроводниковый фотодиод: схема включения (режим фотопреобразователя)

Когда фотодиод не освещен, в цепи проходит обратный темновой ток (5-10 мкА). При освещении фотодиода появляется дополнительное число электронов и дырок, что приводит к увеличению тока в цепи. Выходным сигналом в цепи обычно является напряжение , на резисторе . Фотодиод обладают высокой чувствительностью и используются в схемах автоматического контроля и регулирования.

5. Светодиод - полупроводниковый диод, в котором предусмотрена конструктивная возможность вывода светового излучения из области p n перехода через отверстие в корпусе.

Принцип действия светодиода основан на интенсивной рекомбинации носителей зарядов и, как следствие этого, выделении лучистой энергии при протекании через p n переход прямого тока. Светодиод изготавливают из карбида кремния и фосфида галлия, излучающего видимый свет в диапазоне от красного до голубого.

Светодиоды находят применение в цифровых буквенных и знаковых индикаторах систем автоматики.

Транзистор

Транзистором называется электропреобразовательный прибор с одним или несколькими p – n переходами, предназначенный для усиления мощности .

Широкое распространение имеют транзисторы с двумя p n переходами. Транзисторы данного типа характерны наличием двух различных типов носителей заряда - дырок и электронов.

1.Биполярный транзистор - это транзистор с двумя p n переходами . Для изготовления транзисторов данного типа применяют в основном кремний и германий. Два p n перехода создают трехслойную полупроводниковую структуру из полупроводников с различными типами электропроводимости. В соответствии с чередованием областей с различными типами электропроводимости биполярные транзисторы подразделяются на два класса: типа p – n – p и типа n – p – n .

Транзисторы изготавливаются в металлических, пластмассовых корпусах и в бескорпусном исполнении (для микросхем)

Схематическое устройство и условное графическое обозначение биполярных транзисторов (типа n – p – n ) приведены на рис.4, а.

Рис.4. Биполярный транзистор n – p – n : а) условное обозначение; б) и в) движение носителей заряда (электронов и дырок)

У биполярных транзисторов центральный слой называют базой (Б) . Наружный слой, являющийся источником носителей зарядов (электронов или дырок), который главным образом и создает ток прибора, называют эмиттером (Э) , а наружный слой, принимающий заряды, поступающие от эмиттера, называется коллектором (К) .

Существуют три способа включения транзистора: с общей базой (ОБ) , с общим эмиттером (ОЭ) , и общим коллектором (ОК). Различие в способах включения зависит от того, какой из выводов транзистора является общим для входной и выходной цепей. В схеме ОБ общей точкой входной и выходной цепей является база, в схеме ОЭ- эмиттер, в схеме ОК – коллектор.

Основной схемой включения биполярного транзистора является схема с общим эмиттером (рис.5, а). Для такой схемы входной ток равен току базы: = - . Малая величина входного (управляющего) тока обусловила широкое применение данной схемы.

Зависимость между током и напряжением во входной цепи транзистора при постоянном напряжении между коллектором и эмиттером называют входной (базовой) характеристикой транзистора (), а зависимость тока коллектора от напряжения при постоянных значениях тока базы - семейством его выходных (коллекторных) характеристик (). Входная и выходная характеристики биполярного транзистора средней мощности типа n – p – n приведены соответственно на рис.5, б, в.

Рис.5. Включение биполярного транзистора по схеме с общим эмиттером
Схемы включения биполярного транзистора: а) с ОБ; б) с ОЭ; в) с ОК

2. Полевые (униполярные) транзисторы - в отличие от биполярных транзисторов управление выходным током осуществляется не входным током, а электрическим полем, создаваемым входным напряжением. Делятся на транзисторы с управляющим p–n-переходом ли переходом металл - полупроводник (барьер Шоттки), и с изолированным затвором или транзисторы МДП (МОП) (метал - диэлектрик - полупроводник). Устройство полевого транзистора с управляющим p-n переходом проще биполярного.

А) Полевой транзистор с управляющим p-n переходом - это полевой транзистор, затвор которого изолирован (то есть, отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении. Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении. При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. - Прибор, в котором электрическое поле, возникающее от приложения напряжения между затвором и истоком, управляет через канал током. В полевом транзисторе носители заряда (электроны или дырки) одного знака проходят по полупроводниковому каналу. Канал - это полупроводниковая область в транзисторе, сопротивление которой зависит от потенциала на затворе. Электрод, из которого в канал входят основные носители заряда, называют истоком (И), а электрод, через который основные носители заряда уходят из канала, - стоком (С). Электрод, служащий для регулирования попе речного сечения канала, носит название затвора (З).

Полевые транзисторы изготовляют из кремния и в зависимости от электропроводности исходного материала подразделяют на транзисторы с каналами p - и n - типов.

Полевой транзистор с затвором в виде p – n перехода - полупроводниковый прибор, в котором проводимостью канала можно управлять, подавая напряжение на закрытый p – n переход. Структурная схема и схема включения полевого транзистора с каналом n- типа и затвором в виде p – n перехода приведены на рис.6, а, б.

В транзисторе с каналом n - типа основными носителями заряда в канале являются электроны, которые движутся вдоль канала от истока с низким потенциалом к стоку с более высоким потенциалом образуя ток стока . Между затвором и истоком приложено напряжение, запирающее p – n переход, образованный n - областью канала и p - областью затвора. Таким образом, в полевом транзисторе с каналом n - типа полярности приложенных напряжений следующие: .

В транзисторе с каналом p - типа основными носителями заряда в канале являются дырки, которые движутся в направлении понижения потенциала, поэтому , а .

Рис.6. Структурная схема (а) и схема включения (б) полевого транзистора с каналом n-типа и затвором в виде p – n перехода:1 - ввод истока; 2 - затвор; З - канал; 4 - вывод затвора; 5 - вывод стока

Б). Полевой транзистор с изолированным затвором - это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика. В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды - исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO 2 , выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод - затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП (МОП) -транзисторами.

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ) (рис. 7).

Рис.7 – Схемы включения полевого транзистора: а) ОИ; б) ОЗ; в) ОС

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ.

Условно- графические обозначения полевых транзисторов приведены на рисунке :

1. Полевой транзистор с управляющим p-n переходом

2. Полевой МДП (МОП) транзистор с изолированным затвором

Тиристор

–полупроводниковое устройство, обладающее тремя и более р-n переходами. Используется в электрических схемах в качестве ключа.

Тиристор – это четырехслойный полупроводниковый прибор, обладающий двумя устойчивыми состояниями: состоянием низкой проводимости (тиристор закрыт) и состоянием высокой проводимости (тиристор открыт). Перевод тиристора из закрытого состояния в открытое осуществляется под внешним воздействием электрического напряжения или тока на прибор.

Основными типами являются диодные (двухэлектродные) и триодные (трехэлектродные) тиристоры.

1.В диодном тиристоре (динисторе), структура которого изображена на рис.8, а, переход прибора из закрытого состояния в открытое производится, когда напряжение между анодом и катодом достигает некоторой величины, являющейся номинальным параметром прибора - напряжением переключения .

Рис.8. Диодный тиристор (динистор): а) структура; б) вольт - амперная характеристика

2.Триодным тиристором называется управляемый трехэлектродный переключатель, в котором переключение четырехслойной p 1 – n 1 – p 2 – n 2 – структуры в проводящее состояние (рис.9, а) производится подключением на один из слоев структуры (p 2) напряжения управления. Таким образом, обеспечивается увеличение тока через переход n 3 на величину .

Рис.9. Триодный тиристор: а) структура, вольт - амперная характеристика; б) конструкция

3.Симметричные тиристоры (симисторы) позволяют управлять переключением цепи переменного тока в течение как положительного, так и отрицательного полупериодов приложенного переменного напряжения. На рис.10, а показано условное обозначение прибора в схемах и его вольт - амперная характеристика.

Рис.10. Симметричный тиристор (симистор)

Выпрямитель

- статическое устройство, служащее для преобразования переменного тока источника электроэнергии в постоянный.

Выпрямитель состоит из трансформатора, вентильной группы и сглаживающего фильтра (рис. 11). Трансформатор Тр выполняет несколько функций: изменяет напряжение сети Uвх до значения U1 необходимого для выпрямления, электрически отделяет нагрузку Н от сети, преобразует число фаз переменного тока.

Вентильная группа ВГ преобразует переменный ток в пульсирующий однонаправленный. Сглаживающий фильтр СФ уменьшает пульсации выпрямленного напряжения (тока) до значения, допустимого для работы нагрузки. Трансформатор Тр и сглаживающий фильтр СФ не являются обязательными элементами схемы выпрямителя.

Рис. 11. Структурная схема выпрямителя

Основными параметрами, характеризующими качество работы выпрямителя, являются:

· средние значения выпрямленного (выходного) напряжения Uср и тока Iср,

· частота пульсаций fп выходного напряжения (тока),

· коэффициент пульсаций р, равный отношению амплитуды напряжения пульсаций к среднему значению выходного напряжения.

· внешняя характеристика - зависимость среднего значения выпрямленного напряжения от среднего значения выпрямленного тока,

· к. п. д. η = Pполезн / Pпотр = Pполезн / (полезн + Ртр + Рвг + Рф), где Ртр, Рвг, Рф - мощность потерь в трансформаторе, в вентильной группе и сглаживающем фильтре.

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.



Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.


Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.


УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.


Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.


УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.


Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.


Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.


Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.


Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.


Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.




© 2024
uk-neverlend.ru - Строительный портал - UkNeverlend