27.01.2024

Как сделать термогенератор пельтье своими руками. Элементы пельтье или мой путь к криогенным температурам Элемент пельтье генератор своими руками


Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.

Устройство и принцип действия элемента Пельтье.

Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.

При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.

Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.

Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.

Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.

Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.

Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.

Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.

Применение.

Термоэлектрические модули Пельтье применяются:

  • в небольших бытовых и автомобильных холодильниках;
  • в охладителях воды;
  • в системах охлаждения электронных приборов;
  • в термоэлектрических генераторах.

Я, используя элемент Пельтье, сделал .

Достоинства и недостатки модулей Пельтье.

Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками. Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем. Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.

К достоинству элементов Пельтье можно отнести:

  • отсутствие механически движущихся частей, газов, жидкостей;
  • бесшумная работа;
  • небольшие размеры;
  • возможность обеспечивать как охлаждение, так и нагревание;
  • возможность плавного регулирования мощности охлаждения.

Недостатки:

  • низкий кпд;
  • необходимость в источнике питания;
  • ограниченное число старт-стопов ;
  • высокая стоимость мощных модулей.

Параметры элементов Пельтье.

  • Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
  • Delta Tmax (град) - максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
  • Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
  • Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
  • Resistance (Ом) – сопротивление модуля постоянному току.
  • COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.

Эксплуатационные требования к элементам Пельтье.

Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.

  • Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор . Иначе:
    • Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
    • Допустимый нагрев горячей стороны как правило + 80 °C (в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
    • При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
  • Важен надежный тепловой контакт модуля с радиатором охлаждения.
  • Источник питания для модуля должен обеспечивать ток с пульсациями не более 5% . При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
  • Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
  • К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
  • Недопустимо , для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию .
  • Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность , т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
  • Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В , или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
  • Модули имеют герметичное исполнение, их можно использовать даже в воде.
  • Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.

Мною был разработан для холодильника, удовлетворяющим всем этим требованиям. Он:

  • Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
  • Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
  • Обеспечивает плавное включение модуля.
  • Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
  • Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
  • Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
  • Имеет высокий кпд, широкие функциональные возможности.

Термоэлектрический модуль Пельтье TEC1-12706.

Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.

Характеристики модуля TEC1-12706 привожу в переводе на русский из документации компании производителя – HB Corporation.

Технические параметры TEC1-12706.

Графические характеристики.

0 Рубрика: . Вы можете добавить в закладки.

Экология познания. Элементы Пельтье это такие небольшие (обычно 4х4 см.) штуковины, состоящие из керамических пластин и биметалла между ними, посредством которого при нагревании одной

Речь пойдёт о темрогенераторе на элементах Пельтье.

Элементы Пельтье это такие небольшие (обычно 4х4 см.) штуковины, состоящие из керамических пластин и биметалла между ними, посредством которого при нагревании одной стороны и охлаждении другой – вырабатывается электрический ток. Или наоборот, подавая ток, нагреваем одну сторону и охлаждаем другую. Данное свойство элементов Пельтье используют при изготовлении переносных холодильников, но меня в первую очередь больше интересует генераторная способность этих устройств.

Действительно, очень удобно. Нагреваешь одну сторону элемента, охлаждаешь другую – и получаешь достаточный ток и напряжение для зарядки, например, сотового или прочих электронных девайсов. А у меня вообще с электричеством напряг, часто не бывает, так что такая штука мне жизненно необходима. Нет, конечно, частично, проблему нехватки электричества могут решить солнечные батареи. Это, на данном этапе, я вообще считаю один из лучших источников альтернативной энергетики. Поэтому у меня есть и солнечная батарея (о которой расскажу позже), небольшой, но достаточной для меня мощности. Выдаёт она где-то 1 – 1,5 ампера при напряжении от 5 до 15 вольт.

Но солнце есть не всегда, поэтому термогенератор оказался нужнее. Да и вне цивилизации он необходим, а также выживальщики, я думаю, такими вещами интересуются.

Для создания термогенератора подойдут не всякие элементы Пельтье, а лишь те, которые держат температуру 300-400 градусов. Конечно, можно изготовить генератор и из обычных элементов, тех, что применяют в холодильниках, но лишь в порядке эксперимента. Ибо, чуть только перегреете – и элемент выйдет из строя. Приобрести высокотемпературные элементы можно у американцев или у китайцев.

Можно приобрести элементы и у соотечественников, но уж совсем по баснословной цене, а это не наш путь.

Итак мой термогенератор нагревается масляной (на обычном, самом дешевом, подсолнечном масле) горелкой.

Которая помещена вот в такой разборный корпус, состоящий из консервной банки, регулятора высоты горелки и самого элемента Пельтье.

Сама горелка тоже состоит из банки и угольного фитиля.

Изготовить такой фитиль можно по этой видеоинструкции.

Лично я делаю такие фитили из углей от костра, продвинутые жители больших городов могут просто купить древесный уголь в магазине. Подобная горелка и сама по себе хороша, можно использовать как источник освещения, вместо свечек. Масло на её работу уходит мало, особо не чадит, может гореть сутками.

Вот это элемент Пельтье, сверху на него помещен радиатор от охлаждения компьютерного процессора, с вентилятором.

Это регулятор уровня огня горелки. Я его изготовил от убитого CD-rom_а. Его можно изготовить из чего угодно, лишь бы фантазия работала.

Элемент Пельтье (в данном варианте два-три элемента, друг на друге, всё смазано термопастой) у меня зажат между охлаждающим радиатором и нагревающим радиатором.

Пространство вокруг элемента я заполнил резиной (от каблуков ненужной обуви) и склеил всё это автомобильным термогерметиком.

Вентилятор для охлаждения изготовил из 3–х вольтового двигателя от того же неисправного CD-rom_а и лопастей штатного вентилятора от компьютерного кулера. Двигатель и вентилятор состыковал при помощи китайского суперклея и дискодержателя от всё того же CD-rom_а. В результате получился вентилятор охлаждения, который начинает работать от полутора вольт и жрёт совсем небольшой ток.

Для радиатора нагревания взял радиатор от кулера старого процессора.

Напряжение, порядка 6-8 вольт, у меня выходит на преобразователь, где уменьшается до нужных для девайсов пяти вольт.

Про этот преобразователь я уже писал. http://tutankanara.livejournal.com/410005.html

Вот и сам генератор в сборе. Кат только (в пределах минуты-две) вырабатываемое напряжение достигает полутора вольт, начинает крутиться вентилятор охлаждения, и холодная сторона элемента начинает охлаждаться. В рабочий режим генерации термогенератор выходит через несколько минут. От него можно питать светодиодные гирлянды и заряжать электронные девайсы. Мой генератор даёт порядка 400 миллиампер тока при 5 вольтах напряжения. Сила тока зависит от применяемого элемента. Если будет возможность, поставлю элементы получше.

Также данное устройство, если снять генераторную часть, можно использовать в качестве обычной горелки, для кипячения воды. Обычно я заполняю наполовину банку и она закипает через 10-15 минут. опубликовано

Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, - появлению разности температур, когда протекает электрический ток.

Как работает элемент Пельтье?

Довольно просто применять модуль Пельтье, принцип работы которого заключается в выделении или поглощении тепла в момент контакта разных материалов при прохождении через него энергетического потока электронов перед контактом и после него отличается. Если на выходе она меньше, значит, там выделяется тепло. Когда электроны в контакте тормозятся электрическим полем, они передают кинетическую энергию кристаллической решетке, разогревая ее. Если они ускоряются, тепло поглощается. Это происходит за счет того, что часть энергии забирается у кристаллической решетки и происходит ее охлаждение.

В значительной степени это явление присуще полупроводникам, что объясняется большой разностью зарядов.

Модуль Пельтье, применение которого является темой нашего обзора, используется при создании термоэлектрических охлаждающих устройств (ТЭМ). Простейшее из них состоит из двух полупроводников p- и n-типов, последовательно соединенных через медные контакты.

Если электроны движутся от полупроводника "p" к "n", на первом переходе с металлической перемычкой они рекомбинируют с выделением энергии. Следующий переход из полупроводника "p" в медный проводник сопровождается "вытягиванием" электронов через контакт электрическим полем. Данный процесс приводит к поглощению энергии и охлаждению области вокруг контакта. Аналогичным образом происходят процессы на следующих переходах.

При расположении нагреваемых и охлаждаемых контактов в разных параллельных плоскостях получится практическая реализация способа. Полупроводники изготавливаются из селена, висмута, сурьмы или теллура. Модуль Пельтье вмещает большое количество термопар, размещенных между керамическими пластинами из нитрида или оксида алюминия.

Факторы, влияющие на эффективность ТЭМ

  • Сила тока.
  • Количество термопар (до нескольких сотен).
  • Типы полупроводников.
  • Скорость охлаждения.

Больших величин достигнуть пока не удалось из-за низкого КПД (5-8 %) и высокой стоимости. Чтобы ТЭМ успешно работал, надо обеспечить эффективный отвод тепла с нагреваемой стороны. Это создает сложности в практическом воплощении способа. Если изменить полярность, холодная и горячая стороны меняются друг с другом.

Достоинства и недостатки модулей

Потребность в ТЭМ появилась с возникновением электронных устройств, нуждающихся в миниатюрных системах охлаждения. Преимущества модулей следующие:

  • компактность;
  • отсутствие подвижных соединений;
  • модуль Пельтье принцип работы имеет обратимый при смене полярности;
  • простота каскадных соединений для повышения мощности.

Главным недостатком модуля является низкий КПД. Это проявляется в больших затратах мощности при достижении требуемого эффекта охлаждения. Кроме того, он обладает высокой стоимостью.

Применение ТЭМ

Пельтье модуль применяется преимущественно для охлаждения микросхем и небольших деталей. Начало было положено для охлаждения элементов военной техники:

  • микросхемы;
  • инфракрасные детекторы;
  • элементы лазеров;
  • кварцевые генераторы.

Термоэлектрический модуль Пельтье постепенно стал применяться в бытовой технике: для создания холодильников, кондиционеров, генераторов, терморегуляторов. Главным его назначением является охлаждение небольших объектов.

Охлаждение процессора

Основные компоненты компьютеров постоянно совершенствуются, что приводит к росту тепловыделения. Вместе с ними развиваются системы охлаждения с применением новаторских технологий, с современными средствами контроля. Модуль Пельтье применение в данной сфере нашел прежде всего в охлаждении микросхем и других радиодеталей. С форсированными режимами разгона микропроцессоров традиционные кулеры уже не справляются. А увеличение частоты работы процессоров дает возможность повысить их быстродействие.

Увеличение скорости вращения вентилятора приводит к значительному шуму. Его устраняют за счет использования модуля Пельтье в комбинированной системе охлаждения. Таким путем передовые фирмы быстро освоили производство эффективных охлаждающих систем, которые стали пользоваться большим спросом.

С процессоров тепло обычно отводится кулерами. Воздушный поток может засасываться снаружи или поступать изнутри системного блока. Главная проблема состоит в том, что температура воздуха порой оказывается недостаточной для теплоотвода. Поэтому ТЭМ стали использовать для охлаждения потока воздуха, поступающего в системный блок, тем самым повышая эффективность теплообмена. Таким образом, встроенный воздушный кондиционер является помощником традиционной системы охлаждения компьютера.

С обеих сторон модуля крепятся алюминиевые радиаторы. Со стороны холодной пластины нагнетается воздух на охлаждение к процессору. После того как он заберет тепло, его выдувает другой вентилятор через радиатор горячей пластины модуля.

Современный ТЭМ управляется электронным устройством с датчиком температуры, где степень охлаждения пропорциональна разогреву процессора.

Активизация охлаждения процессоров создает также некоторые проблемы.

  1. Простые охлаждающие модули Пельтье предназначены для непрерывной работы. При пониженном энергопотреблении также уменьшается тепловыделение, что может вызвать переохлаждение кристалла и последующее зависание процессора.
  2. Если работа кулера и холодильника не будет должным образом согласована, последний может перейти в режим нагрева вместо охлаждения. Источник дополнительного тепла вызовет перегрев процессора.

Таким образом, для современных процессоров нужны передовые технологии охлаждения с контролем работы самих модулей. Подобные изменения режимов работы не происходят с видеокартами, которые также требуют интенсивного охлаждения. Поэтому для них ТЭМ подходит идеально.

Автохолодильник своими руками

В середине прошлого века отечественная промышленность пыталась освоить выпуск малогабаритных холодильников, основанных на эффекте Пельтье. Существующие технологии того времени не позволили этого сделать. Сейчас сдерживающим фактором преимущественно является высокая цена, но попытки продолжаются, и успехи здесь уже достигнуты.

Широкое производство термоэлектрических устройств позволяет создать своими руками небольшой холодильник, удобный для использования в автомобилях. Его основой является "сэндвич", который делается следующим образом.

  1. На верхний радиатор наносится слой теплопроводной пасты типа КПТ-8 и приклеивается Пельтье модуль с одной стороны керамической поверхности.
  2. Аналогично к нему крепится с нижней стороны другой радиатор, предназначенный для помещения в камеру холодильника.
  3. Все устройство плотно сжимается и просушивается в течение 4-5 часов.
  4. На обоих радиаторах устанавливаются кулеры: верхний будет отводить тепло, а нижний - выравнивать температуру в камере холодильника.

Корпус холодильника делается с теплоизолирующей прокладкой внутри. Важно, чтобы он плотно закрывался. Для этого можно использовать обычный пластиковый ящик для инструментов.

Питание 12 В подается из системы автомобиля. Его можно сделать и от сети 220 В переменного тока, с блоком питания. Схема преобразования переменного тока в постоянной применяется самая простая. Она содержит выпрямительный мост и сглаживающий пульсации конденсатор. При этом важно, чтобы на выходе они не превышали величину 5 % от номинального значения, иначе эффективность устройства снижается. У модуля имеются два вывода из цветных проводов. К красному всегда подключается "плюс", к черному - "минус".

Мощность ТЭМ должна соответствовать объему бокса. Первые 3 цифры маркировки означают количество пар полупроводниковых микроэлементов внутри модуля (49-127 и более). выражается двумя последними цифрами маркировки (от 3 до 15 А). Если мощности недостаточно, надо приклеить на радиаторы еще один модуль.

Обратите внимание! Если сила тока будет превосходить мощность элемента, он будет нагреваться с обеих сторон и быстро выйдет из строя.

Модуль Пельтье: генератор электрической энергии

ТЭМ можно использовать для выработки электроэнергии. Для этого надо создать перепад температуры между пластинами, и расположенные между ними термопары будут вырабатывать электрический ток.

Для практического использования нужен ТЭМ не менее чем на 5 В. Тогда с его помощью можно будет заряжать мобильный телефон. Из-за низкого КПД модуля Пельтье потребуется повышающий преобразователь постоянного напряжения. Для сборки генератора понадобятся:

  • 2 модуля Пельтье ТЕС1-12705 с размером пластин 40х40 мм;
  • преобразователь ЕК-1674;
  • алюминиевые пластины толщиной 3 мм;
  • кастрюля для воды;
  • термостойкий клей.

Между пластинами помещаются два модуля на клей, а затем вся конструкция фиксируется на дне кастрюли. Если ее заполнить водой и поставить на огонь, получится необходимая разность температуры, вырабатывающая ЭДС порядка 1,5 В. Подключив модули к повышающему преобразователю, можно повысить напряжение до 5 В, необходимых для зарядки аккумулятора телефона.

Чем больше разница температуры между водой и нижней подогреваемой пластиной, тем генератор работает эффективней. Поэтому надо стараться снижать нагрев воды разными способами: сделать ее проточной, почаще заменять свежей и т. п. Действенным средством увеличения разности температур является каскадное включение модулей, когда они накладываются слоями один на другой. Увеличение габаритных размеров устройства позволяет поместить между пластинами больше элементов и тем самым увеличить общую мощность.

Производительности генератора будет достаточно для зарядки небольших аккумуляторов, работы светодиодных ламп или радиоприемника. Обратите внимание! Для создания термогенераторов потребуются модули, способные работать при 300-400 0 С! Остальные подойдут только для пробных испытаний.

В отличие от других средств альтернативного получения электроэнергии они могут работать во время движения, если создать что-то типа каталитического нагревателя.

Отечественные модули Пельтье

ТЭМ своего производства появились у нас на рынке не так давно. Они отличаются высокой надежностью и имеют хорошие характеристики. Модуль Пельтье, который пользуется широким спросом, имеет размеры 40х40 мм. Он рассчитан на максимальный ток 6 А и напряжение до 15 В.

Отечественный модуль Пельтье купить можно за небольшую цену. При 85 Вт он создает температурный перепад 60 0 С. Вместе с кулером он способен защитить от перегрева процессор с рассеиваемой мощностью 40 Вт.

Характеристики модулей ведущих фирм

Зарубежные устройства представлены на рынке в большем разнообразии. Для защиты процессоров ведущих фирм применяется в качестве холодильника РАХ56В модуль Пельтье, цена которого в комплекте с вентилятором составляет $35.

При размерах 30х30 мм он поддерживает температуру процессора не выше 63 0 С при выделяемой мощности 25 Вт. Для питания достаточно напряжения 5 В, а ток не превышает 1,5 А.

Хорошо подходит под охлаждение процессора модуль Пельтье РА6ЕХВ, обеспечивающий нормальный температурный режим при мощности рассеивания 40 Вт. Площадь его модуля составляет 40х40 мм, а потребляемый ток - до 8 А. Кроме внушительных размеров - 60х60х52,5 мм (вместе с вентилятором) - устройство требует наличия вокруг него свободного пространства. Цена его составляет $65.

Когда применяется модуль Пельтье, технические характеристики у него должны соответствовать потребностям охлаждаемых устройств. Недопустимо, чтобы у них была слишком низкая температура. Это может привести к конденсации влаги, которая губительно действует на электронику.

Модули для изготовления генераторов, такие как отличаются большей мощностью - 72 Вт и 108 Вт соответственно. Их различают по маркировке, всегда наносимой на горячую сторону. Максимальная допускаемая температура горячей стороны у них составляет 150-160 0 С. Чем больше температурный перепад между пластинами, тем выше получается напряжение на выходе. Устройство работает при максимальном температурном перепаде 600 0 С.

Модуль Пельтье купить можно недорого - порядка $10 и менее за штуку, если хорошо поискать. Довольно часто продавцы значительно завышают цены, но можно найти в несколько раз дешевле, если приобретать на распродаже.

Заключение

Эффект Пельтье нашел применение в настоящее время в создании небольших холодильников, необходимых современной технике. Обратимость процесса дает возможность изготовить микроэлектростанции, востребованные для зарядки аккумуляторов электронных устройств.

В отличие от других средств альтернативного получения электроэнергии, они могут работать во время движения, если установить каталитический нагреватель.

При помощи простых приспособлений можно использовать теплопотери от нагревания воздуха или жидкостей. В этой статье мы расскажем, как использовать бросовую энергию печей, котлов и открытого огня, преобразовав её в постоянный электрический ток небольшой силы.

Любой химический процесс проходит с выделением разного рода энергии. Такой мощный источник, как горение использовался во все времена. Его можно назвать первичным источником тепла и света. Горят практически все вещества на Земле, выделяя при этом тепло и свет в разных количествах. Преобразовать тепловую энергию в электрическую — дело несложное, если под рукой есть рабочая паротурбина, подобная тем, что установлены на ТЭЦ. Это громоздкое и сложное устройство, которому вряд ли найдётся место в котельной загородного дома. Мы попробуем извлечь пользу из выделения тепла при печном отоплении или нагревании воды.

Эффект Пельтье — это явление перепада температур при взаимодействии термопар двух различных типов проводников (p-типа и n-типа) при прохождении через них постоянного тока. Эффект Зеебека — следствие эффекта Пельтье, когда при нагревании одной из термопар образуется электрический ток. Мы не будем подробно описывать термодинамику процесса — эту сложную для восприятия информацию можно легко найти в справочной литературе. Нас интересует результат и варианты его практического использования.

Конструкция термоэлектрического модуля

Термоэлектрический модуль (ТЭМ) состоит из множества термопар, соединённых между собой медной пластиной. Поле термопар вклеивается между двух керамических пластин. Собрать такой модуль возможно только в заводских условиях. Но скомпоновать несколько ТЭМ для собственных нужд получится и дома. Элементы Пельтье-Зеебека имеются в свободной продаже в специализированных магазинах (и на сайтах) по продаже технологического оборудования .

Собираем ТЭМ на 5 В

Что понадобится:

  • модуль Пельтье TEC1-12705 (40x40) — 2 шт.;
  • повышающий преобразователь постоянного напряжения ЕК-1674;
  • лист дюралюминия толщиной 3 мм;
  • ёмкость для воды с идеально ровным дном (ковш);
  • термоклей;
  • паяльник.

Вырезаем из листа дюралюминия две одинаковые пластины, размерами чуть более двух модулей, лежащих рядом. Укрепляем термоклеем пластины на модулях с обеих сторон. Фиксируем (термоклеем) получившийся «сэндвич» на дно ковша. Такую конструкцию уже можно ставить на огонь, но мы получим на выходе бесполезные 1,5 В. Для улучшения характеристик нам и нужен повышающий преобразователь, который мы впаиваем в цепь. Он повысит напряжение до 5 В, а этого уже достаточно для зарядки мобильного телефона.

Внимание! Преобразователь имеет размеры 1,5х1,5 см. При отсутствии профессиональных навыков доверьте пайку специалисту.

Разность температур в нашей конструкции получается за счёт нагрева одной стороны (от печи или пламени) и охлаждения другой (вода в ковше). Разумеется, чем больше разница, тем эффективнее работа модуля. Поэтому, для работы в режиме микрогенератора понадобится сравнительно низкая температура воды в ковше (её лучше периодически заменять). Для выработки заветных 5 В достаточно поставить конструкцию на стакан с горящей свечой.

Пропорционально комбинируя большее количество модулей, мы получим более эффективную систему выработки энергии. Соответственно, увеличивая конструкцию, пропорционально увеличиваем теплообменник. При этом охлаждаемая поверхность должна быть полностью покрыта ёмкостью с водой (самый простой и доступный вариант).

Всё так просто, что сразу возникает желание собрать побольше модулей в одну систему и вырабатывать 220 В из костра. А потом подключить масляный обогреватель или кондиционер. Такая простая система имеет свои недостатки, и главный из них — низкий КПД. Обычно этот показатель не превышает 5%. Это обуславливает сравнительно малую силу тока 0,5 — 0,8 А и очень малую мощность — до 4 Вт.

Для насоса или лампы накаливания это ничтожно мало, но вполне достаточно для:

  • зарядки аккумуляторов вплоть до мотоциклетных (в вариантах, пропорциональных требованиям);
  • работы светодиодных (LED) ламп;
  • радиоприёмника.

В зимнее время система, помещённая на источник тепла, находящийся на улице, будет работать максимально эффективно.

Затраты на материалы для сборки термоэлектрического микрогенератора на 5 В:

*- данная модель элемента выбрана из соображений цены. Ассортимент ТЭМ у фирм-поставщиков довольно широк, что позволяет подобрать более производительные (до 8 В) модели (они ощутимо дороже).

Заводские изделия подобной конструкции только начинают появляться в продаже. Серийное производство ведётся мелкими партиями, да и ассортимент невелик. Стоимость такого «ковшика» стартует с 2500 руб.

Заводской термогенератор — устройство, основанное на эффекте Пельтье-Зеебека, которое можно закрепить прямо на разогретую поверхность. От конструкции, описанной выше, его отличает заводское исполнение (а значит, надёжность), отсутствие жидкостного теплообменника (вместо него — рёбра для воздушного охлаждения) и более высокая цена.

Стандартный «походный» термогенератор имеет следующие характеристики:

Как видно из таблицы, заводская надёжность и утилитарность обходится недёшево. При этом нельзя сказать, что он функционально превосходит самодельный вариант с ковшом. Впечатляющие 13,5 В ускорят зарядку мобильника, но для этого будет нужно носить с собой 2 кг веса в походе, а это непозволительная роскошь (с учётом размеров прибора). Ну и, конечно, цена заставляет задуматься. На эту сумму можно собрать уже не «термоковшик», а «термокастрюлю» и спокойно заряжать ноутбук. И ещё один нюанс — прибор всё равно требует закрепления на металлической пластине в случае использования открытого огня.

В целом это приятное и удобное дополнение для тех, у кого нет проблем с деньгами и свободным местом в багажнике.

Энергопечь

На сегодняшний день энергопечь — апофеоз применения ТЭМ в быту. Это заводское изделие, по сути дела топка-«буржуйка», для любого вида твёрдого топлива с интегрированным теплоэлектрическим модулем. Идеальный вариант для охотничьих домиков, дач, отдалённых зимовок и вообще любого вида жизни вдали от цивилизации. Рассчитана на автономное использование (без периферических теплоотводов), имеет только очаг и дымоход. Предусматривает приготовление пищи. На эту печь устанавливают самые мощные элементы Пельтье-Зеебека.

Характеристики энергопечей:

Хотя печь и переносная, безусловно, это «супертяжёлая весовая категория» среди бытовых приборов. Однако и спектр задач у энергопечи довольно широк — она может заряжать даже автомобильные аккумуляторы, освещать LED лампами целые комнаты. Ей найдётся место в экспедиционном обозе и в охотничьем вездеходе, в техническом помещении и на даче. Иными словами, в этом случае источник тепла у нас всегда с собой, осталось найти топливо.

В своей нише энергопечь незаменима, хотя и немного настораживает заявленный производителем срок службы — 10 лет. Следует отметить, что, как и в термогенераторе, есть возможность профилактической (или аварийной) замены всех деталей вплоть до корпуса.

Термоэлектрические модули — крайне занятные объекты. Помимо описанных методов применения их также используют для кондиционирования воды и воздуха. При этом на такой же элемент подаётся постоянный ток и он работает «в обратную сторону» — охлаждает воздух. Эта технология с успехом применяется в автомобильных кондиционерах и кулерах для воды, в автомобилестроении и при производстве микропроцессоров. Мы опишем эти устройства в следующей статье .

Виталий Долбинов, рмнт.ру

Приветствую тебя читатель banggood астрологи объявили неделю Пельтье поэтому в обзоре речь пойдёт об одном интересном применении данной штуковины. Милости просим под CUT.

Начнём с ликбеза

Как говорит википедия «Элемент Пельтье - это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье - возникновении разности температур при протекании электрического тока.» Я уверен что после этой фразы понятнее не стало).

Ок попробуем иначе. Представьте себе специфический аквариум, состоящий из зон двух типов. В первой зоне аквариума рыбки плавают быстро во второй медленно. Ещё представим себе на границах зон лопасти, крутящиеся в воде. Правила следующие 1) рыбка переплывает в другую зону только тогда когда её скорость соответствует скорости установленной для зоны.2) при переходе границ зоны рыбка может взаимодействовать с лопастями для увеличения либо для уменьшения своей скорости. Теперь представим несколько зон расположенных последовательно. (зоны с более высокой скоростью назовём З+ с низкой З-) Рыбка находится в З+ она хочет перейти в З- она взаимодействует с лопастью на границе и начинает плыть медленнее, при этом лопасти (на границе З+/З-) начинают крутиться быстрее. Далее рыбка хочет перейти в следующую зону З+ ей надо ускориться она взаимодействует с лопастью на границе З-/З+ и ускоряется при этом лопасть начинает крутиться медленнее. Далее всё повторяется. Можно заметить что одни лопасти будут замедлятся а другие ускорятся. Элемент Пельтье работает по аналогичному принципу. Вместо рыбок там электроны вместо скорости рыбок энергия электронов в полупроводниках. При протекании тока через контакт 2х полупроводников, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников,
При этом чем больше ток тем выше эффект переноса энергии, энергия именно переноситься (а не волшебным образом пропадает) от «холодной» стороны к «горячей», поэтому элемент Пельтье способен охлаждать предметы до температуры ниже комнатной (проще говоря это полупроводниковый тепловой насос). Если у Вас задача просто отвести тепло от процессора транзистора и т.д. применение элемента Пельтье невыгодно т.к. Вам понадобиться Радиатор способный передать в окружающую среду тепло от охлаждаемого объекта + тепло возникающее при работе элемента Пельтье. Думаю с теорией покончено можно двигаться дальше.
Давайте посмотрим как по мнению спонсора обзора выглядит 13,90 зелени.

Модуль представляет из себя этакий 5 уровневый бутерброд, он состоит из пары радиаторов и вентиляторов и собственно самого элемента Пельтье.
Вентилятор большего размера предназначен для отвода тепла. При приложении усилия его можно снять без выкручивания шурупов.
Вентилятор самый обыкновенный (Питание 12В размер 90мм) прикрыт решёткой, изначально вентилятор установлен на отвод воздуха.

На противоположной стороне малый вентилятор (Питание 12В размер 40мм)
Малыш прикручен на совесть
Посмотрим на радиаторы
Большой радиатор размером 100мм*120мм высота 20мм
Малый радиатор 40мм*40мм высота 20мм. Радиаторы скреплены двумя винтами, в малом радиаторе нарезана резьба. При снятии радиатора обнаружена термопаста это хорошо, но можно увидеть что есть недожим.
Контакт с большим радиатором идеальным тоже не назовёшь.
Главный вывод - если хотите выжать из этого модуля максимум то обязательно загляните под радиаторы. А если стереть термопасту то можно увидеть что тут установлен элемент TEC1-12705 (размер 40мм*40мм*4мм) хотя заявлен более мощный TEC1-12706. Мануал на TEC1-12705

Снимем малый радиатор и попробуем запустить модуль замерив температуры «тёплой» и «холодной» сторон.
Температура «холодной» стороны -16,1 «горячей» 37,5 дельта 53,6. ток потребления при 12В составил 4,2А.
На режим элемент Пельтье вышел через 90с.

А теперь весёлая часть.
Находим металлическую и блестящую пластину и делаем в ней отверстие для термопары.
Кладём термопасту и устанавливаем термопару
Далее изготавливаем узконаправленный фотоприёмник и фотодиод из чёрной бумаги и обычных компонентов

Собираем готовое устройство вспоминая правило «угол падения равен углу отражения»
Кто догадался что это такое? Это прибор (ну точнее модель для демонстрации принципа действия) для определения температуры точки росы/относительной влажности воздуха. Действует следующим образом: ИК-светодиод светит в отражающую пластинку, после отражения свет от ИК-светодиода попадает на ИК-фотодиод. С обратносмещённого ИК-фотодиода снимается сигнал напряжения. При охлаждении пластинки до температуры точки росы на ней начинает собираться конденсат, интенсивность отражаемого излучения падает, сигнал на фотодиоде изменяется. Регистрируя температуру пластины, и окружающего воздуха можно найти относительную влажность. Для работы я использовал Brymen BM869 (с самодельным кабелем и софтом) и Uni-t UT61E
Ниже представлен результат
Рыжий график температура пластины, синий график сигнал с фотодиода. Будем считать момент, когда напряжение с фотодиода изменилось на половину от общего изменения напряжения есть момент выпадения конденсата. Исходя из поставленных условий измеренная температура точки росы в комнате +9С.Температура окружающего воздуха 26,7 (на графиках не отображалась т.к. она была неизменна).Одновременно я запустил модуль HTU21 и наблюдал за показаниями в терминале.(скриншот терминала добавлен к графику).Далее я использовал онлайн калькулятор для пересчёта влажности в температуру точки росы
Результат пересчёта влажности с HTU21 в температуру точки росы совпал с измеренной напрямую температурой точки росы. Это значит, что если описанным выше методом определять точку росы, а затем делать пересчёт, то можно достаточно точно определять влажность (Ну естественно если делать всё по-взрослому). Данный метод называется методом охлаждаемого зеркала, а гигрометры, построенные на таком принципе, называются конденсационными. Надеюсь вам понравился обзор, и Вы узнали для себя что-то новое. Всем спасибо за внимание.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +13 Добавить в избранное Обзор понравился +59 +108

© 2024
uk-neverlend.ru - Строительный портал - UkNeverlend