08.12.2023

Обозначение массива. Что такое массив? Операции над массивами


Массив - это набор элементов (компонентов), которые имеют одинаковый . Причём этот тип данных может быть как простым, так и сложным.

Элементы массива в памяти компьютера расположены друг за другом. Получить доступ к отдельному элементу массива можно по индексу этого элемента.

Любой массив имеет фиксированный размер. Таким образом, размерность массива - это количество индексов, необходимое для однозначного доступа к элементу массива.

Массив может быть как одномерным, так и многомерным. Например, таблица - это двухмерный массив (строки таблицы - это одна размерность массива, столбцы таблицы - вторая). Разумеется, таблицу можно представить как два одномерных массива. Но легче работать с одним массивом, нежели с двумя.

Наиболее часто используются одномерные и двухмерные массивы. Реже - трёхмерные. Массивы с большей размерностью я использовать не рекомендую (особенно новичкам), так как это чревато большим количеством труднонаходимых ошибок.

В качестве индекса массива может использоваться переменная. Эта переменная должна обязательно иметь .

Некоторые языки программирования и средства разработки имеют в своём арсенале динамические массивы, то есть массивы не с фиксированной, а с неопределённой размерностью.

Зачем нужны массивы? Ответ простой - для удобства (как, впрочем, и все языковые конструкции). Во многих случаях работать с массивом данных более удобно, чем с отдельными переменными.

Синтаксис массива в Паскале:

var ИмяМассива: array of ТипДанных;

Здесь ИмяМассива - это имя переменной, связанной с этим массивом. ТипДанных - это тип данных элементов массива. Пример:

var M1: array of byte;

Здесь мы объявили массив с именем М1 , который содержит 16 элементов типа byte с индексами от 0 до 15. первый элемент массива имеет индекс 0, второй - индекс 1 и так далее.

Работать с отдельным элементом массива можно так:

var m: byte;
M1 := 100;
m:= M1;

Здесь мы сначала в первый элемент массива записываем значение 100, а потом в переменную m записываем значение первого элемента массива. Догадайтесь, какое значение будет в переменной m после этого))).

Но понять всю прелесть использования массивов вы сможете только тогда, когда попробуете обработать все элементы массива в . Например, так:

for i:= 0 to 15 do M1[i] := i;
for i:= 0 to 15 do Write(M1[i], " ");

Надеюсь, не надо объяснять, что делает этот код. А теперь представьте, сколько бы строк кода вам пришлось написать, если бы то же самое вы делали с помощью обычных переменных.

Двухмерный массив объявляется так:

M2: array of byte;

Это будет матрица (или таблица) 4х2. То есть такой массив имеет некоторое количество строк (в нашем примере 4) и некоторое количество столбцов (в нашем примере 2). Того же результата можно достичь, если объявить массив массивов:

M2e: array of array of byte;

Здесь новичкам обычно трудно сообразить, что со всем этим “многомерьем” делать. Ну ничего, привыкайте. Первый массив - это строки таблицы. Второй - это столбцы. То есть каждый элемент первого массива содержит массив array. Таблица (матрица), представленная нашим примером, выглядит так:


Таким образом,

М2 - это ячейка 1.1 (первая строка, первый столбец)
М2 - это ячейка 1.2 (первая строка, второй столбец)
М2 - это ячейка 2.1 (вторая строка, первый столбец)

Если вы попробуете использовать, например, М2 , то компилятор выдаст предупреждение, так как столбца 3 в нашем массиве не существует. Однако будьте осторожны! В некоторых средствах разработки программа при этом будет создана (зависит от настроек среды)! И вы можете получить ошибку, которую в последствии будет трудно обнаружить.

А теперь пример использования нашего двухмерного массива:

//Заполняем массив for i:= 1 to 4 do for j:= 1 to 2 do M2 := i * 10 + j; //Выводим массив на экран for i:= 1 to 4 do for j:= 1 to 2 do Write(M2, " ");

Как видите, здесь мы используем ДВЕ индексных переменных (i и j ) и вложенные . Как работают вложенные циклы - попробуйте догадаться сами. Если не получится - задайте вопрос в разделе . Этот раздел я стараюсь проверять хотя бы раз в день.

Надеюсь, с этим кодом вы разобрались. Или хотя бы запустили его и посмотрели, что он делает. А он выводит двухмерный массив на экран. Но вывод выполняется в одну строку. И это не очень удобно для двухмерного массива. Ведь обычно в таких массивах представлены матрицы (таблицы). То есть удобнее воспринимать информацию, если она будет выводиться в виде таблицы. В нашем случае хотелось бы получить 4 строки и 2 столбца.

Попробуйте решить эту задачу самостоятельно. А если у вас не получится, то вот один из вариантов решения:

For i:= 1 to 4 do for j:= 1 to 2 do case j of 1: Write(M2, " "); 2: WriteLn(M2, " "); end;

Это решение не является универсальным, так как его сложно применить к массивам с другой размерностью (с другим количеством столбцов). Но зато оно простое. И во многих случаях его можно использовать.

Const k = 8; //Количество столбцов var i, j: byte; M2f: array of array of byte; //Заполняем массив for i:= 1 to 4 do for j:= 1 to k do M2f := i * 10 + j; //Выводим таблицу for i:= 1 to 4 do for j:= 1 to k do case j of k: WriteLn(M2f, " "); else Write(M2f, " "); end;

Изучите внимательно этот пример и найдите все участки кода, где используется константа k . Дальше, надеюсь, вы разберётесь с этим кодом самостоятельно.

Ну и напоследок добавлю, что для определения индексов массива можно использовать уже известные нам по стандартные функции Low и High . Например, так:

WriteLn("Индекс первого элемента М1: ", Low(M1));
WriteLn("Индекс последнего элемента М1: ", High(M1));

Статья получилась больше, чем я ожидал. Но надеюсь, у вас хватило терпения дочитать её до конца...

До сих пор мы работали с простыми типами данных – логический (boolean), целый (integer , word , byte , longint), вещественный (real), символьный (char). Любой алгоритм можно запрограммировать с помощью этих четырех базовых типов. Но для обработки информации о многообразном реальном мире требуются данные, имеющие более сложное строение. Такие сложные конструкции, основанные на простейших скалярных типах, называются структурами. Структура – некоторый составной тип данных, составленный из базовых скалярных. Если структура не изменяет своего строения на протяжении всего выполнения программы, в которой она описана, то такую структуру называют статической.

Массив – однородная совокупность элементов

Самой распространенной структурой, реализованной практически во всех языках программирования, является массив.

Массивы состоят из ограниченного числа компонент, причем все компоненты массива имеют один и тот же тип, называемый базовым. Структура массива всегда однородна. Массив может состоять из элементов типа integer , real или char , либо других однотипных элементов. Из этого, правда, не следует делать вывод, что компоненты массива могут иметь только скалярный тип.

Другая особенность массива состоит в том, что к любой его компоненте можно обращаться произвольным образом. Что это значит? Программа может сразу получить нужный ей элемент по его порядковому номеру (индексу).

Индекс массива

Номер элемента массива называется индексом . Индекс – это значение порядкового типа, определенного, как тип индекса данного массива. Очень часто это целочисленный тип (integer , word или byte), но может быть и логический и символьный.

Описание массива в Паскале. В языке Паскаль тип массива задается с использованием специального слова array (англ. – массив), и его объявление в программе выглядит следующим образом:

Type < имя _ типа >= array [ I ] of T;

где I – тип индекса массива, T – тип его элементов.

Можно описывать сразу переменные типа массив, т.е. в разделе описания переменных:

Var a,b: array [ I ] of T;

Обычно тип индекса характеризуется некоторым диапазоном значений любого порядкового типа: I 1 .. I n . Например, индексы могут изменяться в диапазоне 1..20 или " a ".." n ".

При этом длину массива Паскаля характеризует выражение:

ord (I n)- ord (I 1)+1.

Вот, например, объявление двух типов: vector в виде массива Паскаля из 10 целых чисел и stroka в виде массива из 256 символов:

Type
Vector=array of integer;
Stroka=array of char;

С помощью индекса массива можно обращаться к отдельным элементам любого массива, как к обычной переменной: можно получать значение этого элемента, отдельно присваивать ему значение, использовать его в выражениях.

Опишем переменные типа vector и stroka:

Вычисление индекса массива Паскаля

Индекс массива в Паскале не обязательно задавать в явном виде. В качестве индекса массива можно использовать переменную или выражение, соответствующее индексному типу. Иначе говоря, индексы можно вычислять.

Этот механизм – весьма мощное средство программирования. Но он порождает распространенную ошибку: результат вычислений может оказаться за пределами интервала допустимых значений индекса, то есть будет произведена попытка обратиться к элементу, которого не существует. Эта типичная ошибка называется «выход за пределы массива».

Пример программы с ошибкой массива Паскаля

Program primer _ error ;
Type
vector=array of word;
var
n: integer;
a: vector;
begin
n:=45;
a:=25;
end .

Хотя данная программа полностью соответствует синтаксису языка, и транслятор «пропустит» ее, на стадии выполнения произойдет ошибка выхода за пределы массива Паскаля. При n =45 выражение n *2=90, компьютер сделает попытку обратиться к элементу массива a , но такого элемента нет, поскольку описан массив размерностью 80.

Будем считать, что хорошая программа должна выдавать предупреждающее сообщение в случае попытки обращения к несуществующим элементам массива. Не лишним будет проверять возможный выход как за правую, так и за левую границы массива, ведь не исключено, что в результате вычисления значения выражения получится число, находящееся левее границы массива Паскаля.

Из всего этого следует сделать вывод: программисту надо быть очень аккуратным при работе с индексами массива.

Основные действия с массивами Паскаля

Как известно, определение типа данных означает ограничение области допустимых значений, внутреннее представление в ЭВМ, а также набор допустимых операций над данными этого типа. Мы определили тип данных как массив Паскаля. Какие же операции определены над этим типом данных? Единственное действие, которое можно выполнять над массивами целиком, причем только при условии, что массивы однотипны, – это присваивание. Если в программе описаны две переменные одного типа, например,

Var
a , b: array of real ;

то можно переменной a присвоить значение переменной b (a:= b). При этом каждому элементу массива a будет присвоено соответствующее значение из массива b . Все остальные действия над массивами Паскаля производятся поэлементно (это важно!) .

Ввод массива Паскаля

Для того чтобы ввести значения элементов массива, необходимо последовательно изменять значение индекса, начиная с первого до последнего, и вводить соответствующий элемент. Для реализации этих действий удобно использовать цикл с заданным числом повторений, т.е. простой арифметический цикл, где параметром цикла будет выступать переменная – индекс массива Паскаля. Значения элементов могут быть введены с клавиатуры или определены с помощью оператора присваивания.

Пример фрагмента программы ввода массива Паскаля

Var
A: array of integer ;
Begin
For i:=1 to 10 do
Readln (a[i]); { ввод i- го элемента производится с клавиатуры }

Рассмотрим теперь случай, когда массив Паскаля заполняется автоматически случайными числами, для этого будем использовать функцию random (N).

Пример фрагмента программы заполнения массива Паскаля случайными числами

Var
I: byte ; {переменная I вводится как индекс массива}
Begin
For i:=1 to 10 do
A [ i ]:= random (10); { i -му элементу массива присваивается «случайное» целое число в диапазоне от 0 до 10}

Вывод массива Паскаля

Вывод массива в Паскале осуществляется также поэлементно, в цикле, где параметром выступает индекс массива, принимая последовательно все значения от первого до последнего.

Пример фрагмента программы вывода массива Паскаля

Var
A: array of integer;
I: byte ; {переменная I вводится как индекс массива}
Begin
For i:=1 to 10 do
Write (a [ i ]," "); {вывод массива осуществляется в строку, после каждого элемента печатается пробел}

Вывод можно осуществить и в столбик с указанием соответствующего индекса. Но в таком случае нужно учитывать, что при большой размерности массива все элементы могут не поместиться на экране и будет происходить скроллинг, т.е. при заполнении всех строк экрана будет печататься очередной элемент, а верхний смещаться за пределы экрана.

Пример программы вывода массива Паскаля в столбик

Var
A: array of integer;
I: byte ; {переменная I вводится как индекс массива}
Begin
For i:=1 to 10 do
Writeln ("a[", i,"]=", a[i]); { вывод элементов массива в столбик }

На экране мы увидим, к примеру, следующие значения:

a =2
a =4
a =1 и т.д.

Пример решения задачи с использованием массивов Паскаля

Задача: даны два n -мерных вектора. Найти сумму этих векторов.

Решение задачи:

  • Входными данными в этой задаче будут являться два одномерных массива. Размер этих массивов может быть произвольным, но определенным. Т.е. мы можем описать заведомо большой массив, а в программе определить, сколько элементов реально будет использоваться. Элементы этих массивов могут быть целочисленными. Тогда описание будет выглядеть следующим образом:

    var a , b: array of integer ;

  • Выходными данными будут элементы результирующего массива, назовем его c . Тип результирующего массива также должен быть целочисленным.
  • Кроме трех массивов нам потребуется переменная – параметр цикла и индекс массива, назовем ее i , а также переменная n для определения количества элементов в каждом массиве.

Ход решения задачи:

  • определим количество элементов (размерность) массивов, введем значение n ;
  • введем массив a ;
  • введем массив b ;
  • в цикле, перебирая значения индекса i от 1 до n , вычислим последовательно значения элементов массива c по формуле:

    c [ i ]= a [ i ]+ b [ i ];

  • выведем на экран полученный массив.

Текст программы:

Пример программы суммирования векторов

Program summa;
Var
a, b, c: array of integer;
I, n: byte;
Begin
Write ("введите размерность массивов:");
Readln(n);
For i:=1 to n do
Readln (a[i]); { ввод массива a}
For i:=1 to n do
Readln (b[i]); { ввод массива b}
For i:=1 to n do
C[i]:=a[i]+b[i]; { вычисление суммы массивов }
For i:=1 to n do
write (c[i]," "); { вывод массива с }
end.

Массив (программирование)

Индексный массив (в некоторых языках программирования также таблица , ряд ) - именованный набор однотипных переменных, расположенных в памяти непосредственно друг за другом (в отличие от списка), доступ к которым осуществляется по индексу.

Индекс массива - целое число, либо значение типа, приводимого к целому, указывающее на конкретный элемент массива.

Общее описание

Массив - Упорядоченный набор данных, для хранения данных одного типа, идентифицируемых с помощью одного или нескольких индексов . В простейшем случае массив имеет постоянную длину и хранит единицы данных одного и того же типа.

Количество используемых индексов массива может быть различным. Массивы с одним индексом называют одномерными , с двумя - двумерными и т. д. Одномерный массив нестрого соответствует вектору в математике, двумерный - матрице. Чаще всего применяются массивы с одним или двумя индексами, реже - с тремя, ещё большее количество индексов встречается крайне редко.

Пример статического массива на Паскале -

WordArray: array [ Word ] of Integer ; // Статический, размер = High(Word) + 1 multiArray: array [ Byte , 1 ..5 ] of Char ; // Статический массив, 2 измерения rangeArray: array [ 5 ..20 ] of String ; // Статический массив, размер = 16

Пример статического массива на Си -

Int Array[ 10 ] ; // Статический, размер 10, базовый тип данных - целое число (int) double Array[ 12 ] [ 15 ] ; // Статический массив, 2 измерения, базовый тип данных - число // с дробной частью (double)

Поддержка индексных массивов (свой синтаксис объявления, функции для работы с элементами и т. д.) есть в большинстве высокоуровневых языков программирования . Максимально допустимая размерность массива, типы и диапазоны значений индексов, ограничения на типы элементов определяются языком программирования и/или конкретным транслятором.

В языках программирования, допускающих объявления программистом собственных типов , как правило, существует возможность создания типа «массив». В определении такого типа может указываться размер, тип элемента, диапазон значений и типы индексов. В дальнейшем возможно определение переменных созданного типа. Все такие переменные-массивы имеют одну структуру. Некоторые языки поддерживают для переменных-массивов операции присваивания (когда одной операцией всем элементам массива присваиваются значения соответствующих элементов другого массива).

Объявление типа «массив» в Паскале -

Type TArrayType = array [ 0 ..9 ] of Integer ; (* Объявления типа "массив" *) var arr1, arr2, arr3: TArrayType; (* Объявление трёх переменных-массивов одного типа *)

Специфические типы массивов

Динамические массивы

Динамическим называется массив, размер которого может меняться во время исполнения программы. Для изменения размера динамического массива язык программирования , поддерживающий такие массивы, должен предоставлять встроенную функцию или оператор. Динамические массивы дают возможность более гибкой работы с данными, так как позволяют не прогнозировать хранимые объёмы данных, а регулировать размер массива в соответствии с реально необходимыми объёмами. Обычные, не динамические массивы называют ещё статическими .

Пример динамического массива на Delphi

ByteArray: Array of Byte ; // Одномерный массив multiArray: Array of Array of string ; // Многомерный массив

Пример динамического массива на Си

Float *array1; // Одномерный массив int **array2; // Многомерный массив array1=(float *) malloc (10 *sizeof (float ) ) ; // выделение 10 блоков по sizeof(float)байт каждый array2=(int **) malloc (16 *sizeof (int ) ) ; // выделение 16*8 блоков по sizeof(int) байт каждый for (i=0 ;i<16 ;i++) array2[ i] =(int *) malloc (8 *sizeof (int ) ) ;

Гетерогенные массивы

Гетерогенным называется массив, в разные элементы которого могут быть непосредственно записаны значения, относящиеся к различным типам данных . Массив, хранящий указатели на значения различных типов, не является гетерогенным, так как собственно хранящиеся в массиве данные относятся к единственному типу - типу «указатель». Гетерогенные массивы удобны как универсальная структура для хранения наборов данных произвольных типов. Отсутствие их поддержки в языке программирования приводит к необходимости реализации более сложных схем хранения данных. С другой стороны, реализация гетерогенности требует усложнения механизма поддержки массивов в трансляторе языка.

Массивы массивов

Многомерные массивы, как правило реализованные как одномерные массивы, каждый элемент которых, является ссылкой на другой одномерный массив.

Реализация

Стандартным способом реализации статических массивов с одним типом элементов является следующий:

  1. Под массив выделяется непрерывный блок памяти объёмом S*m 1 *m 2 *m 3 …m n , где S - размер одного элемента, а m 1 …m n - размеры диапазонов индексов (то есть количество значений, которые может принимать соответствующий индекс).
  2. При обращении к элементу массива A адрес соответствующего элемента вычисляется как B+S*(i 1p *m 1 +i 2p *m 2 +…+i (n-1)p *m n-1 +i np), где B - база (адрес начала блока памяти массива), i kp -значение k-го индекса, приведённое к целому с нулевым начальным смещением.

Таким образом, адрес элемента с заданным набором индексов вычисляется, так что время доступа ко всем элементам массива одинаково.

Первый элемент массива, в зависимости от языка программирования , может иметь различный индекс. Различают три основных разновидности массивов: с отсчетом от нуля (zero-based), с отсчетом от единицы (one-based), и с отсчетом от специфического значения заданного программистом (n-based). Отсчет индекса элемента массивов с нуля более характерен для низкоуровневых ЯП, однако этот метод был популяризирован в языках более высокого уровня языком программирорования С.

Более сложные типы массивов - динамические и гетерогенные - реализуются сложнее.

Достоинства

  • легкость вычисления адреса элемента по его индексу (поскольку элементы массива располагаются один за другим)
  • одинаковое время доступа ко всем элементам
  • малый размер элементов: они состоят только из информационного поля

Недостатки

  • для статического массива - отсутствие динамики, невозможность удаления или добавления элемента без сдвига других
  • для динамического и/или гетерогенного массива - более низкое (по сравнению с обычным статическим) быстродействие и дополнительные накладные расходы на поддержку динамических свойств и/или гетерогенности.
  • при работе с массивом в стиле C (с указателями) и при отсутствии дополнительных средств контроля - угроза выхода за границы массива и повреждения данных
Часто от производителей и продавцов мебели можно услышать выражения «массив дерева», «натуральное дерево» и прочее. Но чем же на самом деле является массив дерева и насколько он натурален? Будем разбираться.

Приходя в мебельный магазин, покупателю часто приходится сталкиваться с фразой «данное изделие выполнено из натурального массива дерева». Это можно прочесть и в техническом описании, и услышать заученную фразу от продавца-консультанта. Однако, мало кто разбирается в этой терминологии, и не придает словам никакого значения. Что такое ? Может ли он быть ненатуральным? Чем цельный массив отличается от клееного? Что называется ламелями? Ответы на эти и другие вопросы вы получить в данном материале, где дается конкретное определение каждому из терминов. Данная информация может пригодится вам при выборе мебели, межкомнатных дверей, напольных покрытий и других изделий из дерева.


Что называется массивом дерева

Массивом дерева считается материал, который полностью состоит из натурального дерева. Необработанный массив может иметь вид брусков, досок или деревянных полотен, из которых затем изготавливается мебельное изделие. Массив можно изготавливать различными способами, но всегда только из целых кусков дерева, а не из опилок, стружки и прочих отходов. Это ключевое отличие массива от других древесных материалов, таких как ДСП, МДФ и ДВП. Изделия из цельного дерева считаются самыми элитными, так как данный материал обладает высоким качеством и экологичностью. При этом он отличается высокой стоимостью, которая и придает мебели из натурального дерева элитности. Разобравшись с определением массива дерева, можно переходить к его видам и способам производства.


Цельный массив

На внешнюю привлекательность изделий из натурального дерева большое влияние оказывает существующая текстура поверхности. Наличие сучков, полостей и других образований негативно сказывается на внешнем виде мебели. Из-за этого следует, что более качественными считаются идеально чистые куски древесины, но их гораздо сложнее подобрать. Кусок такой древесины называется цельным, следовательно, как и сам массив.

Мебель из цельного массива дерева относится к элитной категории, что подтверждается соответствующей высокой стоимостью и престижностью. Большая цена формируется не только за счет себестоимость цельного дерева, но и за счет сопутствующей дорогостоящей фурнитуры и отделки. Если вам хочется приобрести изделие из натурального дерева, но при этом вы не готовы платить значительные суммы, можно сделать выбор в пользу другого вида древесного массива - клееного.


Клееный массив

Во время распила свежесрубленных деревьев получается огромное количество небольших кусков, из которых нельзя изготовить цельные бруски или доски, но пускать на опилки тоже нецелесообразно. То же можно сказать о досках с некоторыми дефектами в виде сучков или трещин. Из таких материалов и изготавливается клееный массив, который еще называют мебельным, или, если он имеет форму бруска - евробрусом.

Клееный массив состоит из нескольких слоев древесины, которые фиксируются между собой специальным клеящим веществом. Каждый из этих слоев называется ламелью. Важной особенностью склеивания ламелей является чередование продольного и поперечного направления волокон. Престижность мебели из клееного дерева меньше, чем из цельного, но при этом значительно выше, чем у изделий из ДСП и МДФ. Хоть массив и клееный, но это настоящее дерево, а не клееная стружка и опилки как ДСП или МДФ. По некоторым параметрам клееный массив превосходит цельный. Если говорить по правде, то настоящая мебель из древесного массива должна быть обязательно цельной, но многие производители в попытках привлечения клиентов более низкой стоимостью все чаще используют более дешевое сырье.

Таким образом, выбирая мебель из древесного массива, не стоит обращать внимания на красивые вывески типа «мебель из натурального дерева», «сделано из деревянного бруса» и т.п. По факту, такие изделия состоят из настоящего дерево, вот только главный вопрос в технологии его получения: цельная доска или клееные ламели. Именно на этом стоит концентрировать внимание.


Отличия цельного и клееного массива

Натуральное дерево требует соблюдения всех правил технологического процесса при изготовлении мебели. Самым важным и сложным этапом, который оказывает значительное влияние на качество и долговечность выпускаемой продукции, является сушка. При неправильном хранении или сушке материалов изделие в будущем может растрескиваться и терять свою привлекательность. В этом плане мебель из клееного массива гораздо менее привередлива, она значительно реже ссыхается и растрескивается.

Вторым критерием, который различен у данных типов изделий, является прочность. Благодаря разнонаправленным древесным волокнам, прочность клееных изделий выше, чем у цельных. Конечно, определенную роль играет используемая древесная порода. Еще одним преимуществом клееной древесины является более низкая стоимость. Из недостатков стоит отметить наличие клеящего вещества, и, как следствие, меньшую экологичность. Некоторые производители, стремясь сэкономить, используют не самый качественный клей, который может выделять вредные испарения.

Подводя итог, можно сделать вывод, что древесный массив является самым экологичным и прочным из натуральных материалов, который широко применяется при изготовлении различной мебели. Выбирая между клееным и цельным деревом стоит опираться на собственные возможности и желания. Наличие в клееном массиве клея не является критичным, так как оно значительно меньше, чем в менее качественных материалах, таких как ДСП и МДФ.

>> Статьи

Что такое массивы в программировании?

Массив – это переменная, которая является совокупностью компонентов одного типа. Чтобы использовать массивы в программировании, потребуется предварительное описание определенного типа и указание доступа к элементам. Элементы массива в программировании объединены общим именем. Если требуется обратиться к определенному элементу массива, то достаточно указать имя и индекс. В математике есть понятный пример массива – это векторы и последовательности чисел, в которых группа чисел может обозначаться одним именем. Обратившись к конкретному числу, используют разные индексы.

Виды массивов: одномерные и двухмерные

Если для обращения к элементам использован единственный порядковый номер , то массив называется одномерный или линейный. Выглядит как таблица с одной строкой. Размерность массива определяется посредством количества индексов элементов.

Когда использовано два индекса, то массив будет двухмерным. Если массив представлен в идее таблицы, то номер строки будет соответствовать первому индексу, а номер столбца или ячейки – второму.

Как заполнить массив?

Одним из способов заполнения массива является оператор присваивания. Когда элементы связаны реккурентно и имеют определенную зависимость, подойдет такой способ заполнения. Также можно заполнить однородный массив однородными элементами или значениями, которые получены посредством датчика случайных чисел..

Какие действия производятся с элементами массива?

Сортировка элементов в определенном порядке – убывание или возрастание

Поиск значений

Подсчет количества элементов в массиве, соответствующих определенному условию

Когда два массива эквивалентны, то возможно присвоение одному массиву имени другого. Все компоненты копируются в тот массив, которому и присваивается значение.

Как объявить массив

Чтобы объявить массив и выделить в памяти ячейку для хранения элементов, следует указать размерность и имя. Ключевое слово – массив. К примеру, А 20 означает, что одномерный массив состоит из двадцати элементов. К 6,5 означает, что это двухмерный массив , который представлен в виде таблицы из шести строк и пяти ячеек. Если говорить об ограничениях одномерного массива в программировании, то оно составляет тысячу элементов. Для двухмерных массивов максимально допустимым значением станет таблица из тысячи строк и тысячи ячеек.

Массивы в программировании: работа с ними

Когда массив объявлен, каждый элемент подлежит обработке с указанием имени и индекса в квадратных скобках. Чтобы отличить одномерный массив от двухмерного, используются два индекса. Элементы массива с присвоением индекса называются индексированными переменными, но могут использоваться и в качестве простых переменных. К примеру, быть аргументом в команде.

Типы имени, элементов, индексов

Как придумать имя массиву? Подойдет произвольный идентификатор. По правилам стиля имя должно начинаться с буквы Т большого шрифта. Таким образом, можно отличить идентификатор от других. Последующую часть имени можно придумать в соответствии с конкретными данными для хранения в массиве. Вторая составляющая имени также должна начинаться с заглавной буквы. T Vector может хранить информацию о координатах абстрактного вектора.

Что касается типа элементов в массиве, то это может быть ранее введенный или стандартный. Для создания индексов используются целые числа, а типом станет диапазон. Допустим, тип 1…20 говорит о том, что массив состоит из двадцати элементов, каждый из которых соответствует целому числу от одного до двадцати.


© 2024
uk-neverlend.ru - Строительный портал - UkNeverlend