21.02.2024

Выбор и расчёт схемы умзч. "безупречный" умзч Технические параметры усилителя


Выбираем структурную схему усилителя мощности. Она представлена на рисунке 2. Входной каскад выполнен на транзисторе VT1 , включенный с общим эмиттером. Резистор R4 является нагрузкой первого каскада усиления. С него усиленный сигнал поступает на базу транзистора VT2 , являющимся промежуточным каскадом усиления. Выходной каскад собран на биполярных транзисторах VT7 VT10 по схеме Дарлингтона. Таким образом, усилитель мощности является трёхкаскадным. Составим примерную схему будущего усилителя мощности:

Рисунок 2 - Ориентировочная схема УМЗЧ

Максимальное напряжение на выходе и максимальный выходной ток рассчитываются по выходной мощности PL = 5 Вт. и сопротивлению нагрузки RL = 4 Ом.

Выходной каскад

Традиционно работу и расчёт усилителя мощности начинают рассматривать с выходного каскада, так как от схемы выходного каскада существенно зависят многие параметры УМЗЧ такие как: энергетические показатели, нелинейные искажения, надёжность и т.д. Выходной каскад представляет собой эмиттерный повторитель на комплементарных транзисторах, включённых по схеме Дарлингтона. В этом каскаде нагрузка подключается к коллекторам выходных транзисторов. Выходной каскад УМЗЧ представлен на рисунке 3.


Рисунок 3 - Выходной каскад УМЗЧ

Необходимое напряжение питание усилителя мощности найдём, исходя из формулы мощности:

Из получившейся пропорции находим:

При найдём ;

Выберем напряжение питания немного больше, учитывая погрешности при расчете и потери мощности питания на входном и промежуточном каскадах. Примем

Выходной каскад служит усилителем тока и в общем виде может рассматриваться как преобразователь импедансов, согласующий низкоомный выход каскада с нагрузочным сопротивлением.

Мощность выходных каскадов лежит обычно в пределах от 50мВт. до 100Вт. И более, поэтому при расчете усилителей всегда следует учитывать рассеиваемую транзисторами мощность.

Напряжение пробоя выходных транзисторов VT 8 и VT 10 должно быть:

Максимальная мощность рассеяния транзисторов VT 8 и VT 10 при активной нагрузке и гармоническом сигнале на входе равно:

Ток короткого замыкания выходных транзисторов равен:

Таким образом, при известных значениях параметров по справочным данным выбираем комплементарную пару выходных транзисторов: VT 8 - КТ 816В, VT 10 - КТ 817В.

По максимальному выходному току Imax и минимальному усилению по току B0 = 25, выбранного типа транзисторов VT 8 и VT 10, рассчитываем ток коллектора транзисторов VT 7 и VT 9:

Такому коллекторному току соответствует маломощный кремниевый транзистор КТ 3102Б - структуры n-p-n и маломощный кремниевый транзистор КТ 3107Б - структуры p-n-p .

В качестве транзистора VT 2 (транзистора промежуточного каскада) можно использовать практически любой маломощный низкочастотный транзистор. Следует только обратить внимание на предельное напряжение коллектор-эмиттер, которое не должно быть меньше, чем. Такому напряжению соответствует транзистор типа КТ 3107Б у которого максимальное напряжение коллектор-эмиттер равняется 45В.

Перейдём к рассмотрению и расчёту защиты от токовой перегрузки и короткого замыкания выхода. Из-за малого выходного сопротивления усилитель мощности легко может быть перегружен по току нагрузки и выведен из строя за счёт перегрева выходных транзисторов. Конструктивные меры повышения надёжности, такие как выбор транзисторов с большим запасом по мощности рассеяния, увеличение площади теплоотводящей поверхности, приводят к удорожанию конструкции и ухудшению её массогабаритных показателей. Поэтому целесообразно использовать схемотехнические способы повышения надёжности, вводя в усилитель мощности цепи защиты от токовых перегрузок и коротких замыканий выхода.

Рассмотрим принцип действия защиты выходного каскада УМЗЧ от токовой перегрузки и короткого замыкания выхода. Схема защиты состоит из транзисторов VT 5 и VT 6 и резисторов R 10…R 13. Схема защиты представлена на рисунке 4. Работает цепь защиты следующим образом.

При достаточно малом токе нагрузки транзистор VT 5 заперт, так как падение напряжения на резисторе R 11 недостаточно для его открывания, и цепь защиты практически не оказывает влияния на работу усилителя мощности. При увеличении тока нагрузки растёт падение напряжения на резисторе R 11 (для положительной полуволны; для отрицательной полуволны выходного напряжения будет увеличиваться падение напряжения на резисторе R 12). При достижении напряжения падающего на резисторе R 11, порога UБЭ ПОР открывания транзистора VT 5 он отпирается, забирая на себя часть тока источника, тем самым стабилизируя максимальный ток нагрузки. Номиналы резисторов R11 и R12 рассчитаем по формуле:

Резисторы R 11 и R 13 имеют малое сопротивление (100…150 Ом) и служат для ограничения тока базы транзисторов VT 11 VT 13. Резисторы R 11 и R 13 практически не влияют на работу цепи защиты.

Рисунок 4 - Схема защиты выходного каскада УМЗЧ от токовой перегрузки и короткого замыкания выхода.

Далее перейдем к рассмотрению схемы температурной стабильности тока покоя выходного каскада УМЗЧ. Существует достаточно много различных схемотехнических приёмов обеспечения температурной стабильности тока покоя выходных транзисторов. Все они в конечном счете требуют создания теплового контакта элементов стабилизирующей цепи либо с корпусом транзисторов, либо с теплоотводящей поверхностью. Еще один пример построения выходного каскада усилителя мощности с температурной стабилизацией тока покоя выходных транзисторов приведен на рисунке 4. Преимущество данного способа заключается в том, что на теплоотводящую поверхность помещается только один термочувствительный элемент - транзистор VT 4. Условие, из которого выбирают номиналы резисторов R 6 и R 8:

В общем случае отношение должно быть численно на единицу меньше количества p-n переходов в контуре. Резистор R 8 выполняется переменным для обеспечения установки требуемого тока покоя транзисторов выходного каскада усилителя мощности. Выберем номиналы сопротивлений R 6 и R 8, учитывая, что их отношение должно быть примерно равняться трём, так в выходном каскаде стоят четыре транзистора (т.е. имеется четыре p-n перехода). Возьмём сопротивление R 6 равным 1000 Ом, тогда R 8 будет равным:

Для расчёта резистора R7, воспользуемся выражением:

рассчитаем R 7.

Написать этот материал подтолкну­ла статья в , в которой автор вся­чески критикует все, что до сих пор сделано в области разработки усили­телей звуковой частоты, и предлагает структуру своего "абсолютного" УМЗЧ. Я не согласен с автором, и поэтому, на основе проведенного анализа из­вестных наработок по отдельным уз­лам УМЗЧ , хочу представить свой вариант простого, "безупречного", по выражению Дугласа Селфа , УМЗЧ.

На сегодня известны три основ­ных недостатка биполярных транзи­сторов:

Эффект Эрли (зависимость тока коллектора от напряжения эмиттер- коллектор);

Эффект Миллера (зависимость входной емкости от коэффициента усиления);

Тепловые искажения, связан­ные с зависимостью параметров от температуры кристалла.

Общепризнанный способ борьбы с первыми двумя недостатками и отчасти с третьим - это каскодные схемы. Снижению первого эффек­та, связанного также с пульсация­ми питания УМЗЧ под нагрузкой, способствует раздельное питание драйвера и выходного каскада. Для устранения тепловых искажений необходимо застабилизировать мощность, рассеиваемую на тран­зисторе, а если это выполнить не­ возможно, то хотя бы минимизиро­вать ее колебания.

Для начала определимся с драй­вером. Как показали исследования в , а позднее и в , предельно про­стые симметричные каскодные драй­веры не уступают, а в ряде случаев превосходят по параметрам более сложные схемы с использованием дифкаскада (ДК). Поэтому и остано­вимся на каскодном драйвере.

Теперь необходимо выбрать выход­ной каскад (ВК). Наиболее простой вариант, мало чем уступающий моди­фицированному ВК Хауксфорда, - экономичный ВК Шикпаи с составны­ми транзисторами Дарлингтона, на входе которого добавлен параллель ный повторитель. В этом ВК базо - эмиттерные переходы параллельно­го повторителя задают смещение для ВК и одновременно осуществляют термостабилизацию. Для этого нуж­но выбрать транзисторы VT 12, VT 16 и VT 13, VT 1 5 одного типа и попарно обеспечить тепловой контакт.

Достоинство такого решения еще и в том, что эти транзисторы рабо­тают как токовое зеркало, и изменяя ток коллектора транзисторов парал­лельного повторителя, можно регу­лировать ток покоя выходных тран­зисторов. В таком включении иска­жения мало зависят от тока покоя выходных транзисторов, поэтому, с целью повышения КПД, его можно выставить в пределах 5...30 мА. Еще одно достоинство этого ВК в том, что он и без ООС вносит очень малые искажения .

Диоды VD 5, VD 8 улучшают термо­стабилизацию и снижают искажения, так как выходные транзисторы рабо­тают как масштабные отражатели тока с большим коэффициентом от­ражения, а диоды VD 6, VD 7 служат для ограничения минимального на­пряжения база-коллектор выходных транзисторов с целью предотвраще­ния их насыщения. Низкоомные ре­зисторы R 29, R 30 способствуют бы­строму выключению транзисторов.

В результате объединения этих двух каскадов получим схему УМЗЧ с однокаскадным драйвером, приве­денную на рис.1.

Достоинством пол­ностью симметричной схемы УМЗЧ является то, что при подборе "зер­кальных" транзисторов по статичес­кому коэффициенту передачи тока базы (для себя, любимого, можно это позволить) и одинаковых элект­ролитических конденсаторов УМЗЧ не имеет переходных процессов. Поэтому отпадает необходимость в реле задержки подключения АС.

С целью минимизации искажений, связанных с перечисленными недо­статками, сделано небольшое услож­нение схемы драйвера: добавлен каск ад для входных транзисторов и в качестве генератора стабильного тока (ГСТ) использован любимый ГСТ Дугласа Селфа с токовой ОС, в кото­ром застабилизированы токи коллек­торов транзисторов токовой обратной связи. Такой ГСТ позволяет миними­зировать влияние пульсаций питаю­щего, напряжения и, таким образом, отказаться от дополнительных источ­ников питания. Наиболее линейный участок характеристики тока стабили­зации для диода Е202 (S 202) - при падении напряжения на нем в пре­делах 5...20 (3...50) В . Падение на диоде ограничено с учетом просадки напряжения под нагрузкой с помо­щью резистора R 18. При отсутствии диода его можно заменить перемыч­кой, от этого параметры практически не пострадают.

В качестве выходных транзисторов с успехом можно использовать тран­зисторы старого образца типа КТ825, КТ827 (аналоги приведенных на схе­ме). Еще лучшие результаты можно получить с современными транзисто­рами, например, 2SD 2560,2SB 1647; 2SD 2449, 2SB 1594; 2SD 2385, 2SB 1556 и аналогичными.

Нулевое смещение на выходе УМЗЧ отрабатывает интегратор на DA 1. Благодаря дополнительной фильтрации, в звуковом диапазоне он себя никак не проявляет. Учиты­вая, что использованный ВК сам по себе имеет малые искажения, мож­но предусмотреть перемычки для работы без общей ООС, как это предложено в .

Данный усилитель - с открытым входом, поэтому перед подключени­ем к нему нормирующего усилителя необходимо убедиться в отсутствии на его выходе постоянной составляю­щей. Входное сопротивление УМЗЧ- небольшое (около 3 кОм), поэтому если на выходе нормирующего усили­теля стоит конденсатор, его емкость должна быть не менее 10 мкФ. Так как неэлектролитические конденсаторы такой емкости достаточно велики, можно составить конденсатор из двух встречно включенных полярных емко­стью по 22...47 мкФ и параллельно им неполярного емкостью 1 ...2 мкФ. Луч­ше после регулятора громкости ис­пользовать буферный повторитель (а если чувствитель­ности недостаточ­но, то нормирую­щий усилитель с К и =2...3) на ОУ и непосредственно к его выходу под­ключить УМЗЧ.

Снимем стан­дартные характе­ристики: диаграм­му Боде без кон­денсатора С1, не­линейные иска­жения на часто­тах 1, 10 и 20 кГц, а также посмот­рим, нет ли видимых искажений фор­мы сигнала на частоте 100 кГц.


Диаграмма Боде показана на рис.2. Из нее видно, что усилитель доста­точно широкополосен: частота среза -около 500 кГц при частоте единич­ного усиления 2 МГц. Небольшой выброс в области 400 кГц обуслов­лен работой двухполюсной коррек­ции. Запас по амплитуде - 18 дБ, запас по фазе - около 60°, что яв­ляется оптимальным значением.

Вносимые нелинейные искажения при амплитуде сигнала на выходе 30 В на частотах 1,10 и 20 кГц соот­ветственно равны 0,0005, 0,001 и 0,003%. В качестве примера на рис.3 показан спектр искажений на часто­те 10 кГц.


Как видно из рисунка, в спектре имеются только 2-я и 3-я гар­моники. Уровень ближайшей гармо­ники, попадающей в звуковой диапа­зон, составляет те же 0,0005 %, как и на частоте 1 кГц.

Проверим скорость нарастания сигнала: нет ли каких-либо видимых искажений на полной мощности на частоте 100 кГц (рис.4)?


Как видим, и здесь все в порядке. При провер­ке УМЗЧ меандром частотой 2 кГц (без конденсатора С1) выяснилось, что на полках наблюдаются неболь­шие выбросы по окончании фрон­та. Но с установкой конденсатора С1 на место, полки меандра абсо­лютно ровные, а фронты сигнала достаточно крутые.

Вторая модификация УМЗЧ, на ко­торую также хочется обратить внима­ние, показана на рис.5. В ней количе­ство элементов такое же, как и в схе­ме на рис.1, но выходной каскад драй­вера, как и входной, - каскодный.

Нет предела совершенствованию! После подключения к простому усилителю Василича приобретенных колонок DYNAUDIO Excite X12 возникло ощущение, что усилитель звуковой частоты немножко не дорабатывает на низких частотах. При прослушивании данных колонок в магазине они легко воспроизводили глубокий бас. В составе домашнего медиа центра этого не наблюдалось. После изучения данной темы в сети интернет я пришел к выводу для данных АС изготовить более качественный УМЗЧ. К улучшенному усилителю напряжения простого усилителя Василича (в УН введено токовое зеркало Уилсона) был добавлен улучшенный N-канальный выходной каскад Алексея Никитина (Q8-Q12). Схема нового усилителя мощности звуковой частоты приведена ниже.

В результате получился «Качественный усилитель Василича» с более низким выходным сопротивлением.

Основные технические характеристики усилителя мощности:
Номинальная выходная мощность (Вт) - 45 (при Rn = 4 Ом);
Полоса пропускаемых частот (кГц) - 0,01...100;
Коэффициент гармоник во всем диапазоне частот (%) - 0,001
(коэффициент гармоник собранного в железе аппарата без подбора элементов - не более 0,005);

Входное сопротивление (кОм) - 10;
Номинальное входное напряжение (В) - 3;
Выходное сопротивление (Ом) - не более 0,1;
Ток покоя выходного каскада (мА) - 200.

Ток покоя задается резистором R21. На плату был установлен многооборотный резистор номиналом 100 Ом. Рекомендую выставлять ток покоя не менее 75 мА. Уже при этом значении искажения оконечника Никитина в текущей реализации не превышают 0.1% и имеют короткий, быстро спадающий спектр гармоник. При токе покоя 200 мА в спектре остается почти одна вторая гармоника и искажения оконечника не превышают 0.02%.

Подбором резистора R5 добиваемся правильной балансировки плеч питания.

В качестве выходных транзисторов Q12/13 можно установить IRLZ24N, которые обладают почти в 2 раза меньшей входной емкостью. Это позволит добиться еще более прозрачного звучания на высоких частотах, но несколько ухудшит проработку баса на низкоомной АС. HUF76639P3, рекомендованные к применению в оригинальном усилителе Алексея Никитина, придавали усилителю более ватное звучание.

Для питания стереофонического усилителя используется блок питания, собранный по следующей схеме.

Тороидальный трансформатор, мощностью 120 Вт имеет две вторичные обмотки по 36 В. После выпрямительных диодов последовательно установлены электролитические конденсаторы, в месте соединения которых образуется средняя точка (для каждого канала своя) без гальванической связи с общим проводом . К этим точкам подключаются минусовые провода акустических систем левого (AS Rc) и правого (AS Rc) каналов. В свой УМЗЧ, исходя из наличия компонентов, я установил 12 фильтрующих конденсаторов (по 3 в каждом плече емкостью 6800 мкФ на 50В). Трансформаторов может быть два, каждый мощностью по 60 - 80 Вт. Электролитические конденсаторы могут быть зашунтированы бумажными.

Плата усилителя спроектирована с помощью программы Sprint-Layout. Виды со стороны деталей и дорожек приведены ниже.

Плата усилителя изготовлена по проверенной ЛУТ-технологии.

Фотографии собранного УМЗЧ:



Результат измерений собранного усилителя на нагрузку 4 Ом при выходной мощности 21 Вт:

В настоящее время для качественного воспроизведения музыки мною в составе мультимедийного центра используются: персональный компьютер, ЦАП с USB-входом, усилитель от Василича с оконечником Никитина и акустические колонки DYNAUDIO Excite X12. Теперь все компоненты звукового тракта примерно одного класса и на данный момент меня полностью устраивают.

Вложение : 991,62 KB (Скачиваний: 930)

Вложение : 192,60 KB (Скачиваний: 814)

Выходные каскады на базе " двоек "

В качестве источника сигнала будем использовать генератор переменного тока с перестраиваемым выходным сопротивлением (от 100 Ом до 10,1 кОм) с шагом 2 кОм (рис. 3). Таким образом, при испытаниях ВК при максимальном выходном сопротивлении генератора (10,1 кОм) мы в какой - то степени приблизим режим работы испытуемых ВК к схеме с разомкнутой ООС, а в другом (100 Ом) - к схеме с замкнутой ООС.

Основные типы составных биполярных транзисторов (БТ) показаны на рис. 4. Наиболее часто в ВК используется со ставной транзистор Дарлингтона (рис. 4 а) на базе двух транзисторов одной проводимости (" двойка " Дарлингтона), реже - составной транзистор Шиклаи (рис. 4б) из двух транзисторов разной проводимости с токовой отрицательной ОС, и еще реже - составной транзистор Брайстона (Bryston , рис. 4 в).
" Алмазный " транзистор - разновидность составного транзистора Шиклаи - показан на рис. 4 г. В отличие от транзистора Шиклаи, в этом транзисторе благодаря " токовому зеркалу " ток коллекторов обоих транзисторов VT 2 и VT 3 практически одинаков. Иногда транзистор Шиклаи используют с коэффициентом передачи больше 1 (рис. 4 д). В этом случае K П =1+ R 2/ R 1. Аналогичные схемы можно получить и на полевых транзисторах (ПТ).

1.1. Выходные каскады на базе " двоек ". " Двойка " - это двухтактный выходной каскад с транзисторами, включенными по схеме Дарлингтона, Шиклаи или их комбинации (квазикомлементарный каскад, Bryston и др.). Типовой двухтактный выходной каскад на " двойке " Дарлингтона показан на рис. 5. Если эмиттерные резисторы R3, R4 (рис. 10) входных транзисторов VT 1, VT 2 подключить к противоположным шинам питания, то эти транзисторы будут работать без отсечки тока, т. е. в режиме класса А.

Посмотрим, что даст спаривание выходных транзисторов для двойки " Дарлингт она (рис. 13).

На рис. 15 приведена схема ВК, использованная в одном из професс и ональных усилителей.


Менее популярна в ВК схема Шиклаи (рис. 18) . На первых порах развития схемотехники транзисторных УМЗЧ были популярны квазикомплементарные выходные каскады, когда верхнее плечо выполнялось по схеме Дарлингтона, а нижнее - по схеме Шиклаи. Однако в первоначальной версии входное сопротивление плеч ВК несимметрично, что приводит к дополнительным искажениям. Модифицированный вариант такого ВК с диодом Баксандалла, в качестве которого использован базо - эмиттерный переход транзистора VT 3, показан на рис. 20.

Кроме рассмотренных " двоек ", есть модификация ВК Bryston , в которой входные транзисторы эмиттерным током управляют транзисторами одной проводимости, а коллекторным током - транзисторами другой проводимости (рис. 22). Аналогичный каскад может быть реализован и на полевых транзисторах, например, Lateral MOSFET (рис. 24) .

Гибридный выходной каскад по схеме Шиклаи с полевыми транзисторами в качестве выходных показан на рис. 28 . Рассмотрим схему параллельного усилителя на полевых транзисторах (рис. 30).

В качестве эффективного способа повышения и стабилизации входного сопротивления " двойки " предлагается использовать на ее входе буфер, например, эмиттерный повторитель с генератором тока в цепи эмиттера (рис. 32).


Из рассмотренных " двоек " наихудшим по девиации фазы и полосе пропускания оказался ВК Шиклаи. Посмотрим, что может дать для такого каскада применение буфера. Если вместо одного буфера использовать два на транзисторах разной проводимости, включенных параллельно (рис. 35) , то можно ожидать дальнейшего улучшения пара метров и повышения входного сопротивления. Из всех рассмотренных двухкаскадных схем наилучшим образом по нелинейным искажениям показала себя схема Шиклаи с полевыми транзисторами. Посмотрим, что даст установка параллельного буфера на ее входе (рис. 37).

Параметры исследованных вы ходных каскадов сведены в табл. 1 .


Анализ таблицы позволяет сделать следующие выводы:
- любой ВК из " двоек " на БТ как нагрузка УН плохо подходит для работы в УМЗЧ высокой верности;
- характеристики ВК с ПТ на вы ходе мало зависят от сопротивления источника сигнала;
- буферный каскад на входе любой из " двоек " на БТ повышает входное сопротивление, снижает индуктивную составляющую выхода, расширяет полосу пропускания и делает параметры независимыми от выходного сопротивления источника сигнала;
- ВК Шиклаи с ПТ на выходе и параллельным буфером на входе (рис. 37) имеет самые высокие характеристики (минимальные искажения, максимальную полосу пропускания, нулевую девиацию фазы в звуковом диапазоне).

Выходные каскады на базе " троек "

В высококачественных УМЗЧ чаще используются трехкаскадные структуры: " тройки " Дарлингтона, Шиклаи с выходными транзисторами Дарлинг тона, Шиклаи с выходными транзис торами Bryston и другие комбинации. Одним из самых популярных вы ходных каскадов в настоящее вре мя является ВК на базе составно го транзис тора Дарлингтона из трех транзисторов (рис. 39). На рис. 41 показан ВК с разветвлением каскадов: входные повторители одновременно работают на два каскада, которые, в свою очередь, также работают на два каскада каждый, а третья ступень включена на общий выход. В результате, на выходе такого ВК работают счетверенные транзисторы.


Схема ВК, в которой в качестве выходных транзисторов использованы составные транзисторы Дарлингтона, изображена на рис. 43. Параметры ВК на рис.43 можно существенно улучшить, если включить на его входе хорошо зарекомендовавший себя с " двойками " параллельный буферный каскад (рис. 44).

Вариант ВК Шиклаи по схеме на рис. 4 г с применением составных транзисторов Bryston показан на рис. 46 . На рис. 48 показан вариан т ВК на транзисторах Шиклаи (рис.4 д) с коэффициентом передачи около 5, в котором входные транзисторы работают в классе А (цепи термоста билизации не показаны).

На рис. 51 показан ВК по структуре предыдущей схемы только с единичным коэффициентом передачи. Обзор будет неполным, если не остановиться на схеме выходного каскада с коррекцией нелинейности Хауксфорда (Hawksford), приведенной на рис. 53 . Транзисторы VT 5 и VT 6 - составные транзисторы Дарлингтона.

Заменим выходные транзисторы на полевые транзисторы типа Lateral (рис. 57


По вышению надежности усилите лей за счет исключения сквозных то ков, которые особенно опасны при кли пировании высокочастотных сиг налов, способствуют схемы антинасыщения выходных транзисторов. Варианты таких решений показаны на рис. 58. Через верхние диоды происходит сброс лишнего тока базы в коллектор транзистора при прибли жении к напряжению насы щен ия. На пряжение насыщения мощных транзисторов обычно находится в пределах 0,5...1,5 В, что примерно совпадает с падением напряжения на базо-эмиттерном переходе. В первом варианте (рис. 58 а) за счет дополнительного диода в цепи базы напряжение эмитте р - коллектор не доходит до напряжения насыщения пример но на 0,6 В (падение напряжения на диоде). Вторая схема (рис. 58б) требует подбора резисторов R 1 и R 2. Нижние диоды в схемах предназначены для быстрого выключения транзисторов при импульсных сигналах. Аналогичные решения применяются и в силовых ключах.

Часто для повышения качества в УМЗЧ делают раздельное питание, повышенное, на 10...15 В для входного каскада и усилителя на пряжения и пониженное для вы ходного каскада. В этом случае во избежание выхода из строя выходных транзисторов и снижения перегрузки предвыходных необходимо использовать защитные диоды. Рассмотрим этот вариант на примере модификации схемы на рис. 39. В случае повышения входного напряжения выше на пряжения питания выходных транзисторов открываются дополнительные диоды VD 1, VD 2 (рис. 59), и лишний ток базы транзисторов VT 1, VT 2 сбрасывается на шины питания оконечных транзисторов. При этом не допускается повышения входного на пряжения выше уровней питания для выходной ступени ВК и снижается ток коллектора транзисторов VT 1, VT 2.

Схемы смещения

Ранее, с целью упрощения, вместо схемы смещения в УМЗЧ использовался отдельный источник напряжения. Многие из рассмотренных схем, в частности, выходные каскады с параллельным повторителем на входе, не нуждаются в схемах смещения, что является их дополнительным достоинством. Теперь рассмотрим типовые схе мы смещения, которые представлены на рис. 60 , 61 .

Генераторы стабильного тока. В современных УМЗЧ широко используется ряд типовых схем: диф ференциальный каскад (ДК), отражатель тока (" токовое зеркало "), схема сдвига уровня, каскод (с последова тельным и параллельным питанием, последний также называют " лома ным каскодом "), генератор стабильного тока (ГСТ) и др. Их правильное применение позволяет значительно повысить технические характеристики УМЗЧ. Оценку параметров основных схем ГСТ (рис. 62 - 6 6) сделаем с помощью моделирования. Будем исходить из того, что ГСТ является нагрузкой УН и включенпараллельно ВК. Исследуем его свойства с помощью методики, аналогичной исследованиям ВК.

Отражатели тока

Рассмотренные схемы ГСТ - , это вариант динамической нагрузки для однотактного УН. В УМЗЧ с одним дифференциальным каскадом (ДК) для организации встречной динамической нагрузки в УН используют структуру " токового зеркала " или, как его еще называют, " отражателя тока " (ОТ). Эта структура УМЗЧ была характерна для усилителей Холтона, Хафлера и др. Основные схемы отражателей тока приведены на рис. 67 . Они могут быть как с единичным коэффициентом передачи (точнее, близким к 1), так и с большим или меньшим единицы (масштабные отражатели тока). В усилителе напряжения ток ОТ находится в пределах 3...20 мА: Поэтому испытаем все ОТ при токе, например, около 10 мА по схеме рис. 68.

Результаты испытаний приве дены в табл. 3 .

В качестве примера реального усилителя предлагается схема усилителя мощности S. BOCK , опубликованная в журнале Радиомир, 201 1 , № 1, с. 5 - 7; № 2, с. 5 - 7 Radiotechnika №№ 11, 12/06

Целью автора было построение усилителя мощности, пригодного как для озвучивания " пространства " во время прадничных мероприятий, так и для дискотек. Конечно, хотелось, чтобы он умещался в корпусе сравнительно небольших габаритов и легко транспортировался. Еще одно требование к нему - легкодоступность комплектующих. Стремясь достичь качества Hi - Fi , я выбрал комплементарно - симметричную схему выходного каскада. Максимальная выходная мощность усилителя была задана на уровне 300 Вт (на нагрузке 4 Ом). При таком мощности выходное напряжение составляет примерно 35 В. Следовательно для УМЗЧ необходимо двухполярное питающее напряжение в пределах 2x60 В. Схема усилителя приведена на рис. 1 . УМЗЧ имеет асимметричный вход. Входной каскад образуют два дифференциальных усилителя.

А. ПЕТРОВ, Радиомир, 201 1 , №№ 4 - 12

Ниже приведены принципиальные схемы и статьи по тематике "УМЗЧ" на сайте по радиоэлектронике и радиохобби сайт .

Что такое "УМЗЧ" и где это применяется, принципиальные схемы самодельных устройств которые касаются термина "УМЗЧ".

К особенностям описываемого УМЗЧ относится применение в нем составных транзисторов, что позволило сократить число используемых в усилителе деталей. Первый каскад усилителя мощности собран на ОУ А1. Входной сигнал поступает на инвертирующий вход ОУ через фильтр верхних частот (ФВЧ) R1C1R3 с частотой среза 20 кГц. Для того, чтобы этот параметр ФВЧ существенно не изменился, выходное сопротивление предварительного усилителя должно быть не более... Схема простого в сборке и мощного усилителя низкой частоты (УМЗЧ) выполненного на ОУ К574УД1А и мощных составных транзисторах КТ825, КТ827. Не смотря на простоту принципиальной схемы и минимального количества деталей усилитель обеспечивает большую выходную мощность при достаточно низком коэффициенте нелинейных искажений. Усилитель питается двуполярным напряжением 7 - 18 В, выходная мощность 15 Вт на нагрузке 4 Ом, ток покоя около 60 мА. Диоды -любые кремниевые универсальные. Выходная мощность усилителя 2 X 12 Вт при напряжении питания 15 В, сопротивление нагрузки 4 Ом, ток покоя - 80мА. УНЧ А-9510 фирмы Onkyo (рис. 2.13) обеспечивает 60 Вт на нагрузке 8 Ом при коэффициенте демпфирования 150, коэффициенте гармоник не более 0,06% и 100 Вт на нагрузке 4 Ом. Неравномерность АЧХ на краях диапазона 15 Гц — 50 кГц не превышает 1 дБ. Отношение сигнал/шум 104 дБ. ... УМЗЧ Дьеря Плахтовича выполнен по мостовой схеме (верхний усилитель/плечо моста неинвертирующий, нижний — инвертирующий). Он обеспечивает в нагрузке 8 Ом мощность 180 Вт при коэффициенте гармоник не более 0,5%, выходном сопротивлении 0,02 Ом, полосе частот от 20... High-End УМЗЧ Джованни Сточино обеспечивает 100 Вт на нагрузке 8 Ом при коэффициенте гармоник 0,002% и скорости нарастания выходного напряжения 300 В/мкс. Полоса частот по уровню -0,1 дБ составляет от 1 Гц до 1,3 МГц, отношение сигнал/шум 100 дБ... «Полевой» УМЗЧ Эндре Пирета заметно прост, но также соответствует нормам высококачественного звуковоспроизведения. Оригинально (без привычных дифференциальных усилителей) решен входной каскад — это двухтактный комплементарный каскад... Йозеф Седлак предложил схемы двух эстрадных УМЗЧ повышенной мощности. Первый усилитель выполнен по классической схеме: дифкаскад с генератором тока (Т1-ТЗ); усилитель напряжения (Т4) с генератором тока (Т6); двухтактный составной повторитель (T9-Т14)... Данный УНЧ обеспечивает 20 Вт/ 40 Вт на нагрузке 8 Ом/ 4 Ом при коэффициенте гармоник 0,01%. Схема 20-ваттного УМЗЧ с оригинальной раскачкой выходной ступени представлена ниже... В последнее время очень большое внимание уделяется кабелям, соединяющим выход УМЗЧ с входом АС. Конечно, кабели имеют большое значение для получения качественного звука. Но, несмотря на довольно высокую цену, они принципиально не могут не вносить искажений. ... УМЗЧ Антона Космела выполнен на ИМС STK4048 XI фирмы Sanyo и вообще не требует подстроек. Он развивает 2x150 Вт на нагрузке 8 Ом и 2x200 Вт на 4 Ом при коэффициенте гармоник не более 0,007% и полосе частот 20 Гц — 50 кГц. На ОУ 102 выполнена схема защиты... Деметр Барнабаш выполнил свой УМЗЧ на ИМС TDA7294V фирмы SGS-THOMSON. При предельно простой схеме он обеспечивает на нагрузке как 8 Ом, так и 4 Ом музыкальную мощность до 100 Вт (номинальную на стационарной синусоиде — 70 Вт) при типовом коэффициенте гармоник... Мощный УМЗЧ с работой всех каскадов в режиме класса А, обеспечивающий на 8-омной нагрузке 32 Вт при потрясающе высоком реальном КПД 45% Ричард Барфут обращает внимание, что в обычном резистивном усилительном каскаде с ОЭ и разделительным конденсатором теоретически... Индуктивность в цепи фазовой коррекции применил в своем мощном УНЧ В. Левицкий. Усилитель абсолютно симметричен и состоит из входного истокового повторителя (VT1, VT2), двухтактного комплементарного усилителя напряжения («каскоды» VT3VT5, VT4VT6) и... В усилителе, схема которого изображена ниже высокая линейность даже без ООС достигнута благодаря внутреннему истоковому повторителю на VT11. Этот повторитель удачно согласует большое (более 1 МОм) выходное сопротивление каскада усиления напряжения на VT9 с существенно... Исследуя причины возрастания нелинейности на большом сигнале, Дуглас Селф обнаружил, что, во-первых, акустическая система в некоторых условиях требует существенно больший ток, чем рассчитанный по закону Ома с подстановкой в знаменатель паспортного номинального сопротивления АС... Нельсон Пэсс, идеолог УМЗЧ по топологии Zen (далее усилители Зена) и руководитель Pass Labs, подводя итог восьмилетнего развития Zen-овской философии однокаскадных УМЗЧ, предложил Penultimate Zen. Нельсон отмечает, что в нем устранены некоторые... Схема УМЗЧ, разработанного Мэттом Такером. Первый дифференциальный каскад выполнен на биполярных транзисторах Q1Q5 по типовой схеме с токовым зеркалом Q7Q8 в нагрузке, а каскад усиления напряжения — на Q9Q13 с ОЭ и нагрузкой на генератор тока Q6Q2 ...

© 2024
uk-neverlend.ru - Строительный портал - UkNeverlend